Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T22:18:17.083Z Has data issue: false hasContentIssue false

Photoelectrochemical Etching of GaN Thin Films With Varying Carrier Concentrations

Published online by Cambridge University Press:  01 February 2011

Jacob H. Leach
Affiliation:
s2jleach@vcu.edu, Virginia Commonwealth University, Electrical Engineering, 601 West Main St., Richmond, VA, 23284, United States
Ümit Özgür
Affiliation:
uozgur@vcu.edu, Virginia Commonwealth University, Electrical and Computer Engineering, 601 West Main St., Richmond, VA, 23284, United States
Hadis Morkoç
Affiliation:
hmorkoc@vcu.edu, Virginia Commonwealth University, Electrical and Computer Engineering, 601 West Main St., Richmond, VA, 23284, United States
Get access

Abstract

The evolution of the surface morphology of unintentionally doped and Si-doped GaN samples subjected to photoelectrochemical (PEC) etching in the carrier-limited regime in aqueous KOH is reported. It was found that a nanoporous structure precedes whisker formation in samples in which high densities of whiskers ultimately form. Increasing the light intensity accelerated the rate of change of the surface morphology, but increasing the molarity of the KOH had no effect on the etching. Applying biases to the samples during etching also accelerated or decelerated the rates of change of the surface morphology. Thus, the surface morphology in the carrier-limited regime tends to only depend on parameters of the starting layers, as well as how much etching in total has occurred. The identification of variations in surface morphology at different times during PEC etching of GaN may have utility in that assorted nanopatterning of the GaN surface can be intentionally achieved in a controllable, large-scale, and inexpensive manner.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Youtsey, C., Adesida, I., Romano, L. T., and Bulman, G., Appl. Phys. Lett. 72, 560 (1998)Google Scholar
2. Youtsey, C., Adesida, I., and Bulman, G., Appl. Phys. Lett. 71, 2151 (1997)Google Scholar
3. Borton, J. E., Cai, C., Nathan, M. I., Chow, P., Hove, J. M. Van, Wowchak, A., and Morkoç, H., App. Phys. Lett. 77, 1227 (2000)10.1063/1.1289807Google Scholar
4. Popa, V., Tiginyanu, I. M., Ursaki, V. V., Volcius, O., and Morkoç, H., Semicond. Sci. and Technol. 21, 1518 (2006)10.1088/0268-1242/21/12/002Google Scholar
5. Soh, C. B., Hartono, H., Chow, S. Y., Chua, S. J., and Fitzgerald, E. A., Appl. Phys. Lett. 90, 053112 (2007)Google Scholar
6. Ursaki, V. V., Tiginyanu, I. M., Volciuc, O., Popa, V., Skuratov, V. A., and Morkoç, H., Appl. Phys. Lett. 90, 161908 (2007)Google Scholar
7. Fujii, T., Gao, Y., Sharma, R., Hu, E. L., DenBaars, S. P., and Nakamura, S., Appl. Phys. Lett. 84, 855 (2004)Google Scholar
8. Grenko, J. A., Reynolds, C. L. Jr, Schlesser, R., Hren, J. J., Bachmann, K., and Sitar, Z., J. Appl. Phys. 96, 5185 (2004)10.1063/1.1788841Google Scholar
9. Bardwell, J. A., Webb, J. B., Tang, H., Fraser, J., and Moisa, S., J. Appl. Phys. 89, 4142 (2001)10.1063/1.1352684Google Scholar
10. Harush, E., Brandon, S., Salzman, J., and Paz, Y., Semi. Sci. and Tech. 17, 510 (2002)10.1088/0268-1242/17/6/302Google Scholar
11. Leung, K., Wright, A. F., and Stechel, E. B., Appl. Phys. Lett. 74, 2495 (1999)Google Scholar
12. Visconti, P., Jones, K. M., Reshchikov, M. A., Cingolani, R., Morkoç, H., and Molnar, R.J., Appl. Phys. Lett. 77, 3532 (2000)Google Scholar
13. Moon, Y. T., Liu, C., Xie, J., Ni, X., Fu, Y., Morkoç, H., Zhou, L., and Smith, D.J., Appl. Phys. Lett. 89, 024103 (2006)10.1063/1.2219093Google Scholar