Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-19T19:45:34.827Z Has data issue: false hasContentIssue false

Photodefinable Benzocyclobutene Formulations for Thin Film Microelectronic Applications. III. 1 to 20 Micron Patterned Films

Published online by Cambridge University Press:  15 February 2011

E. S. Moyer
Affiliation:
The Dow Chemical Company, Central Research and Development, Midland, MI.
G. S. Becker
Affiliation:
The Dow Chemical Company, Central Research and Development, Midland, MI.
E. W. Rutter Jr.
Affiliation:
The Dow Chemical Company, Central Research and Development, Midland, MI.
M. Radler
Affiliation:
The Dow Chemical Company, Central Research and Development, Midland, MI.
J. N. Bremmer
Affiliation:
The Dow Chemical Company, Central Research and Development, Midland, MI.
M. T. Bernius
Affiliation:
The Dow Chemical Company, Central Research and Development, Midland, MI.
D. Castillo
Affiliation:
The Dow Chemical Company, Central Research and Development, Midland, MI.
A. J. G. Strandjord
Affiliation:
The Dow Chemical Company, Central Research and Development, Midland, MI.
R. Heistand
Affiliation:
The Dow Chemical Company, Central Research and Development, Midland, MI.
P. Foster
Affiliation:
The Dow Chemical Company, Central Research and Development, Midland, MI.
R. F. Harris
Affiliation:
The Dow Chemical Company, Central Research and Development, Midland, MI.
Get access

Abstract

Negative working photodefinable benzocyclobutene formulations capable of obtaining patterned dielectric films from 1 to 20 microns thick are being developed using bisaryl azides as photocrosslinkers. Three different formulations are used to cover this range of film thicknesses. The formulations are very sensitive to the 365 nm and 405 nm wavelengths of light (i-line and h-line) of the high pressure mercury spectrum and require low exposure doses to produce resolved patterns. Twenty five micron round and square vias with sloping sidewalls (geometry good for metallization) have been successfully patterned in 10 micron thick films. The photodefined patterns can be obtained with good film retention using several developing solvents including: Stoddard solvent, ProglydeTM DMM, and n-butyl butyrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Burdeaux, D.C., Townsend, P. H., Carr, J. N., and Garrou, P. E., J. Elect. Mat., 19, 1357 (1990).Google Scholar
2. Reche, J., Garrou, P. E., Carr, J. N., and Townsend, P. H., Int. J. Hybrid Microelect., 13, 91 (1990).Google Scholar
3. Reche, J. J. H., IEEE Trans. on CHMT, 13, 565 (1990).Google Scholar
4. Fong, S. O., Keister, F. Z., and Peters, J. W., SAMPE Proceedings, Boston, 602 (1990).Google Scholar
5. Berry, M. J., Tessier, T. G., Turlik, I., Adema, G. M., Burdeaux, D. C., Carr, J. N., and Garrou, P. E., Proceedings of Electronic Components and Technologies Conference, Las Vegas, 746 (1990).Google Scholar
6. Pranjoto, H. and Denton, D. D., Mat. Res. Soc. Symp., 203, 295 (1991).CrossRefGoogle Scholar
7. Heistandil, R. H., DeVellis, R., Manial, T. A., Kennedy, A. P., Garrou, P. E., Stokich, T. M. Jr., Townsend, P. H., Adema, G. M., Berry, M. J., and Turlik, I., ISHM Proceedings, Orlando, 96 (1991).Google Scholar
8. Johnson, R. W., Philips, T. L., Weidner, W. K., Hahn, S. F., Burdeaux, D. C., and Townsend, P. H., IEEE Trans. on CHMT, 13, 347 (1990).Google Scholar
9. Stokich, T. M., Burdeaux, D., Mohler, C. E., Townsend, P., Warrington, S., Tou, J., Han, B. J., Pryde, C., Bair, H., and Johnson, G., Materials Research Society, Anaheim, 1991.Google Scholar
10. Johnson, R. W., Philips, T. L., Hahn, S. F., Burdeaux, D. C., and Townsend, P. H., Proceedings of International Society for Hybrid Microelectronics, Seattle, 365 (1988).Google Scholar
11. Townsend, P. H., Stokich, T. M., Huber, B. S., Proceedings of Materials Research Society, 226, 215 (1991).Google Scholar
12. Rutter, E. W. Jr., Moyer, E. S., Harris, R. F., Frye, D. C., Jeor, V. L. St., and Oaks, F. L., Proceedings of the First International Conference on Multichip Modules, (ISHM & IEPS), Denver, CO. April 1992, p. 394.Google Scholar
13. Moyer, E. S., Rutter, E. W. Jr., Bernius, M.T., Townsend, P. H., and Harris, R. F., Proceedings of IEPS, Austin, TX. September 1992, Volume 1, p. 37.Google Scholar
14. Parham, N.J. H., Pitts, E., and Reiser, A., Photogr. Sci. Eng., 21: 145 (1977)Google Scholar
15. Reiser, A., Photoreactive Polymers: The Science and Technology of Resists, John Wiley & Sons, New York, 1989, p. 228.Google Scholar
16. Lai, J. H., Ed., Polymers for Electronic Applications, CRC Press, Inc., Boca Raton, Florida, 1989, pp 911.Google Scholar
17. Carr, J. N., Hybrid Circuit Technol, 7(8), 25, (1990)Google Scholar
18. Unpublished results.Google Scholar
19. Tsou, A.H., Hord, J.S., Smith, G.D., and Schrader, R.W., Polymer, 33, p. 2970 (1992).CrossRefGoogle Scholar
20. Hinkley, J.A. and Mings, S.D., Polymer, 31, p.75 (1990).Google Scholar
21. Klemann, B. and Devilbiss, T., to be submitted to Polymer Engineering Science.Google Scholar