Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-06T15:59:59.288Z Has data issue: false hasContentIssue false

Photocurrent measurements of MgxZn1-xO epitaxial layers of different x

Published online by Cambridge University Press:  31 January 2011

Richard K. Thöt
Affiliation:
Richard.K.Thoet@physik.uni-giessen.de, Justus-Liebig-Universität, I. Physikalisches Institut, Giessen, Germany
Thomas Sander
Affiliation:
Thomas.Sander@physik.uni-giessen.de, Justus-Liebig-Universität, I. Physikalisches Institut, Giessen, Germany
Peter J. Klar
Affiliation:
Peter.J.Klar@exp1.physik.uni-giessen.de, Justus-Liebig-Universität, I. Physikalisches Institut, Giessen, Germany
Bruno Meyer
Affiliation:
Bruno.K.Meyer@exp1.physik.uni-giessen.de, Justus-Liebig-Universität, I. Physikalisches Institut, Giessen, Germany
Get access

Abstract

The MgxZn1-xO alloy in wurtzite structure can be grown with Mg contents x up to 0.4. The band gap of the alloy increases with x. Furthermore, ZnO/MgxZn1-xO quantum well structures are of type I and thus are of interest for the active region of opto-electronic devices.

We report on in-plane photocurrent measurements of MgxZn1-xO epitaxial layers with x up to about 0.4 in the temperature range from 80 K to 300 K. Epitaxial films are either grown by plasma-assisted molecular beam epitaxy on c-plane sapphire substrates with a thin MgZnO buffer layer and by chemical vapor deposition on a-plane ZnO substrates. We map the evolution of the band gap transitions as a function of the Mg composition at different temperatures for the c-plane samples and as a function of polarization of the incoming light for an a-plane sample. The contributions of A, B and C interband transitions to the band gap signals are analysed and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Sakurai, Y., Yoshida, Y., Yasuda, T., Segawa, Y., and Koinuma, H., Appl. Phys. Lett. 72, 2466 (1998)10.1063/1.121384Google Scholar
2 Muthukumar, S., Zhong, J., Chen, Y., Siegrist, T., and Lu, Y., Appl. Phys. Lett. 82, 742 (2003)10.1063/1.1541950Google Scholar
3 Ohtomo, A., Kawasaki, M., Ohkubo, I., Koinuma, H., Yasuda, T., and Segawa, Y., Appl. Phys. Lett. 75, 980 (1999)10.1063/1.124573Google Scholar
4 Tampo, H., Shibata, H., Matsubara, K., Yamada, A., Fons, P., Niki, S., Yamagata, M., and Kanie, H., Appl. Phys. Lett. 89, 132113 (2006)10.1063/1.2357588Google Scholar
5 Diebold, U., Koplitz, L. Vogel, and Dulub, O., Appl. Surf. Sci. 237, 336 (2004)10.1016/S0169-4332(04)00985-7Google Scholar
6 Du, M., Zhang, S. B., Northrup, J. E., and Erwin, S. C., Phys. Rev. B, 78, 155424 (2008)10.1103/PhysRevB.78.155424Google Scholar
7 Kao, C.J., Kwon, Y.W., Heo, Y.W., Norton, D.P., Ren, F., Chi, G.C., and Pearton, S.J., J. Vac Sci. Technol. B 23, 1024 (2005)10.1116/1.1924613Google Scholar
8 Sasa, S., Ozaki, M., Koike, K., Yano, M., and Inoue, M., Appl. Phys. Lett. 89, 053502 (2006)10.1063/1.2261336Google Scholar
9 Koike, K., Takagi, D., Kawasaki, M., Hashimoto, T., and Inoue, T., Jpn J. Appl. Phys. 46, L865 (2007)10.1143/JJAP.46.L865Google Scholar
10 Wassner, T.A., Laumer, B., Maier, S., Laufer, A., Meyer, B.K., Stutzmann, M., and Eickhoff, M., J. Appl. Phys. 105, 023505 (2009)10.1063/1.3065535Google Scholar
11 Graubner, S., Neumann, C., Volbers, N., Meyer, B. K., Bläsing, J., and Krost, A., Appl. Phys. Lett. 90, 042103 (2007)10.1063/1.2434170Google Scholar
12 Schleife, A., Rödl, C., Fuchs, F., Furthmüller, J., and Bechstedt, F., Appl. Phys. Lett. 91, 241915 (2007)10.1063/1.2825277Google Scholar
13 Gubarev, S.I., phys. stat. sol. (b) 134, 211 (1986)10.1002/pssb.2221340126Google Scholar