Skip to main content Accessibility help
×
Home

Photochemical Studies Using Organic-Inorganic Sol-Gel Materials

  • B. C. Dave (a1) (a2), F. Akbarian (a2), B. Dunn (a1) and J. I. Zink (a2)

Abstract

The flexible solution chemistry of the sol-gel process has been used to encapsulate a wide variety of organic, organometallic, and biomolecules in inorganic solids. This paper reviews different types of photochemical reactions which we have used to produce specific products or to generate oxygen within sol-gel matrices. By controlling synthesis conditions, the molecules can be made to exhibit desired reactivities when trapped in the sol-gel matrix.

Three different examples of photochemical reactions are presented in this paper. An organometallic gold precursor compound, dimethyl (hexafluoroacetylacetonato)gold, dissolved in a silicate sol is used to produce gold nanoparticles of desired sizes. The second example is based on sol-gel encapsulated photochromic (and thermochromic) spiropyran, that converts to a colored form using thermal energy or UV radiation. The synthesis strategies for selectively isolating the colored or the colorless form in sol-gel materials are presented. Materials of these types may be useful in writeonce- read-many (WORM) optical data storage applications. The third example involves sol-gel matrices doped with a biosystem, the green plant photosystem H (PS II). The resulting aged gels and xerogels are photoactive and are capable of photooxidizing water. Oxygen illumination was measured under white light and there is an indication that PS II particles are stabilized by the encapsulation process.

Copyright

References

Hide All
1. Zink, J. I., Valentine, J. S., and Dunn, B., New J. Chem. 18, 1109 (1994).
2. Dunn, B., and Zink, J. I., J. Mater. Chem. 1, 903 (1991).
3. Avnir, D., Braun, S., Lev, O., and Ottolenghi, M., Chem. Mater. 6, 1605 (1994).
4. Hench, L. L., and West, J. K., Chem. Rev. 90, 33 (1990).
5. Fox, M. A., Photochem. Photobiol. 52, 617 (1990).
6. Ramamurthy, V., Weiss, R. G., and Hammond, G. S. Adv. Photochem. 18, 67, (1993).
7. Cauqui, M. A., and Rodriguez-Izquierdo, J. M., J. Non-Cryst. Solids, 147–8, 724 (1992).
8. Lopez, T., Herrera, L., Mendez-Vivar, J., Gomez, R., and Gonzalez, R. D., J. Non-Cryst. Solids 147–8, 753 (1992).
9. Akbarian, F., Dunn, B., and Zink, J. I., J. Phys. Chem. 99, 3982 (1995).
10. Mie, G., Ann. Phys 25, 377, (1908).
11. Bertelson, R. C. in Techniques of Chemistry, Vol III: “Photochromism”, Brown, G. H., Ed., Wiley-Interscience, New York, (1971), p 100.
12. Lan, E. H., Dave, B. C., Dunn, B., Valentine, J. S., and Zink, J. I., MRS Symp Proc. (1995).
13. Preston, D., Novinson, T., Kaska, W. C., Dunn, B., and Zink, J. I., J. Phys. Chem. 94, 4167 (1990).
14. Evans, T. R., Toth, A. F., and Leermakers, P. A., J. Am. Chem. Soc. 89, 5060 (1967)
15. Levy, D., and Avnir, D., J. Phys. chem. 92, 4737 (1988).
16. Ueda, M., Kim, H.-B., and Ichimura, K., J. Mater. Chem. 4, 883 (1994).
17. Dave, B. C., Dunn, B., Valentine, J. S., and Zink, J. I., Anal. Chem. 66, 1120A (1994).
18. Renger, G., Angew. Chem., Int. Ed. Engl. 26, 643 (1987).
19. Berthold, D. A., Babcock, G. T., and Yocum, C. F., FEBS Lett, 134, 231 (1981).

Related content

Powered by UNSILO

Photochemical Studies Using Organic-Inorganic Sol-Gel Materials

  • B. C. Dave (a1) (a2), F. Akbarian (a2), B. Dunn (a1) and J. I. Zink (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.