Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T01:01:54.092Z Has data issue: false hasContentIssue false

Photo and Electroluminescence of a-Si:Er:H

Published online by Cambridge University Press:  10 February 2011

Leandro R. Tessler
Affiliation:
Instituto de Fisica “Gleb Wataghin”, UNICAMP, C. P. 6165, 13083-970 Campinas, SP, Brazil, tessler@ifi.unicamp.br
Ana Carola Iñiguez
Affiliation:
Instituto de Fisica “Gleb Wataghin”, UNICAMP, C. P. 6165, 13083-970 Campinas, SP, Brazil
Get access

Abstract

Trivalent erbium (Er3+) presents a characteristic intra 4f optical transition 4I13/24I15/2 at 1.54 μm when incorporated in several solid hosts. Hydrogenated amorphous silicon (a-Si:H) is a good candidate as a host for applications in optical communications and photonic integration. We have studied Er3+ photo and electroluminescence in a-Si:H prepared by co-sputtering from a silicon target partially covered with metallic erbium chunks. Since the presence of oxygen impurities enhances the luminescence intensity, we studied the influence of oxygen added to the sputtering gas on the material properties. We found that oxygen reduces the erbium incorporation into the films. We obtained samples presenting 1.54 μm photoluminescence as deposited for a wide range of erbium concentrations. Maximum room-temperature photoluminescence efficiency is obtained for samples that contain ∼ 1% [O]/[Si] concentrations. The temperature quenching is small, mainly due to the temperature dependence of the luminescence lifetime.

Room temperature electroluminescence at 1.54 νm was observed in reverse biased Si/a-Si:Er:O:H/Al structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Agrawal, G. P., Fiber-Optic Communication Systems, 2nd edition, John Willey, New York, 1997, p. 287.Google Scholar
2 Adler, D. L., Jacobson, D. C., Eaglesham, D. J., Marcus, M. A., Benton, J. L., Poate, J. M. and Citrin, P. H., Appl. Phys. Lett. 61, 2128 (1992).Google Scholar
3 Rare Earth Doped Semiconductors, edited by Pomrenke, G. S., Klein, P. B., and Langer, D. W., (Mater. Res. Soc. Proc. 301, Pittsburgh, PA 1993); Rare Earth Doped Semiconductors II, edited by A. Polman, S. Coffa and R. Schwartz, (Mater. Res. Soc. Proc. 422, Pittsburgh, PA 1996).Google Scholar
4 For a review on ion implantation see Polman, A., J. Appl. Phys. 82, 1 (1997).Google Scholar
5 Ennen, H., Pomrenke, G., Axmann, A., Eisele, K., W. Haydl and Schneider, J., Appl. Phys. Lett. 46, 381 (1985).Google Scholar
6 Coffa, S., Franzó, G. and Priolo, F., Appl. Phys. Lett. 69, 2077 (1996).Google Scholar
7 Michel, J., Benton, J. L., Ferrante, R. F., Jacobson, D. C., Eaglesham, D. J., Fitzgerald, E. A., Xie, Y. H., Poate, J. M. and Kimerling, L. C., J. Appl. Phys. 70, 2672 (1991).Google Scholar
8 Oesterreich, T., Swialtowski, C. and Broser, I., Appl. Phys. Lett. 56, 446 (1990).Google Scholar
9 Bressler, M. S., Gusev, O. B., Kudoyarova, V. Kh., Kuznetsov, A. N., Pak, P. E., Terukov, E. I., Yassievich, I. N., Zakharchenya, B. P., Fuhs, W. and Sturm, A., Appl. Phys. Lett. 67, 3599 (1995).Google Scholar
10 Shin, J. H., Serna, R., Hoven, G. N. van den, Polman, A., Sark, W. G. J. H. M. van and Vredenberg, A. M., Appl. Phys. Lett. 68, 997 (1996).Google Scholar
11 Zanatta, A. R., Nunes, L. A. O. and Tessler, L. R., Appl. Phys. Lett. 70, 511 (1997).Google Scholar
12 Tessler, L. R. and Zanatta, A. R., J. Non-Crystalline Sol., in press (1998).Google Scholar
13 Tessler, L. R., Phil. Mag. Lett. 67, 273 (1993).Google Scholar
14 The authors acknowledge Prof M. Tabacniks from LAMFI, USP, Sāo Paulo for providing us access to the RBS facilities and his help in the measurements and processing of the data.Google Scholar
15 http://www.genplot.comGoogle Scholar
16 Gusev, O. B., Kuznetsov, A. N., Terukov, E. I., Bressler, M. S., Kudoyarova, V. Kh., Yassievich, I. N., Zakharchenya, B. P. and Fuhs, W., Appl. Phys. Lett. 70, 240 (1997).Google Scholar
17 Tessler, L. R., Piamonteze, C., Ifiiguez, A. C., Alves, M. C. Martins and Tolentino, H., in Applications of Synchrotron Radiation Techniques to Materials Science IV, edited by Mini, S.M., Perry, D.L., Stock, S.R. and Terminello, L.J. (Mater. Res. Soc. Proc. 524, Pittsburgh, PA, in print).Google Scholar
18 Lucovsky, G., Yang, J., Chao, S. S., Tyler, J. E. and Czubatyj, W., Phys. Rev. B 28, 3225 (1983).Google Scholar
19 Przybylinska, H., Jantsch, W., Suprun-Belevitch, Yu., Stepikhova, M., Palmetshofer, L. and Hendorfer, G., Kozanecki, A., Wilson, R. J. and Sealy, B. J., Phys. Rev. B 54, 2532 (1996).Google Scholar
20 Hoven, G. N. van den, Shin, J. H., Polman, A., Lombardo, S. and Campisano, S. U., J. Appl. Phys. 78, 2642 (1996).Google Scholar
21 Fuhs, W., Ulber, I., Weiser, G., Bressler, M. S., Gusev, O. B., Kuznetsov, A. N., Kudoyarova, V. Kh., Terukov, E. I., Yassievich, I. N., Phys. Rev. B 56, 9545 (1997).Google Scholar