Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-01T12:08:05.034Z Has data issue: false hasContentIssue false

Phonons and Holes in Magnesium Doped GaN

Published online by Cambridge University Press:  10 February 2011

F. Demangeot
Affiliation:
Laboratoire de Physique des Solides, Université P. Sabatier, 31062 Toulouse Cedex, France
J. Frandon
Affiliation:
Laboratoire de Physique des Solides, Université P. Sabatier, 31062 Toulouse Cedex, France
M. A. Renucci
Affiliation:
Laboratoire de Physique des Solides, Université P. Sabatier, 31062 Toulouse Cedex, France
D. Smirnov
Affiliation:
Laboratoire de Physique de la Matière Condensée, INSA, 31077 - Toulouse Cedex, France
J. Létin
Affiliation:
Laboratoire de Physique de la Matière Condensée, INSA, 31077 - Toulouse Cedex, France
N. Grandjean
Affiliation:
Centre de recherche sur l'Hétero-Epitaxie et ses Applications, CNRS, Sophia Antipolis, 06560 Valbonne, France
B. Beaumont
Affiliation:
Centre de recherche sur l'Hétero-Epitaxie et ses Applications, CNRS, Sophia Antipolis, 06560 Valbonne, France
M. Kuball
Affiliation:
University of Bristol, H.H. Wills Physics Laboratory, Bristol B58 1TL, United Kingdom
T. Davies
Affiliation:
University of Bristol, H.H. Wills Physics Laboratory, Bristol B58 1TL, United Kingdom
J. W Steeds
Affiliation:
University of Bristol, H.H. Wills Physics Laboratory, Bristol B58 1TL, United Kingdom
Get access

Abstract

P doping of gallium nitride by incorporation of magnesium in the layers was controlled recently. Only Popovici et al. [1] have published the results of a Raman study on p type GaN. In the present communication, we report on the interaction of the free hole gas with the axial A1(LO) or planar E1(LO) phonon modes, evidenced by Raman scattering: the observed coupled phononplasmon mode is found very different from the corresponding one evidenced in silicon doped (n type) GaN. We compare the experimental data with the lineshape calculated within a dielectric model, using the results of electrical measurements. These results are also compared with infrared reflectivity spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Popovici, G., Xu, G. Y., Botchkarev, A., Kim, W., Salvador, A., Morkoç, H., Strange, R. and White, J. O., J. Appl. Phys. 82, 4020 (1997).Google Scholar
2. Grandjean, N., Leroux, M., Laügt, M. and Massies, J., Appl. Phys. Lett. 71, 240 (1997).Google Scholar
3. Cardona, M., Light Scattering in Solids II, Springer, 1982, p. 61.Google Scholar
4. Hon, D. T. and Faust, W. L., J. Appl. Phys. 1, 241, 1973.Google Scholar
5. Demangeot, F., Frandon, J., Renucci, M. A., Grandjean, N., Beaumont, B., Massies, J. and Gibart, P., to be published in : Solid State Commun., 1998.Google Scholar
6. Wetzel, C., Walukiewicz, W. and IIIAger, J. W., Mater. Research Soc. Symp. Proc. 449, 567, 1997.Google Scholar
7. Pankove, J., Bloom, S. and Harbeke, G., RCA Rev. 36, 163, 1975.Google Scholar
8. Wan, K. and Young, J. F., Phys. Rev. 41, 10772, 1990.Google Scholar
9. Demangeot, F., Frandon, J., Renucci, M. A., Meny, C., Briot, O. and Aulombard, R. L., J. Appl. Phys. 82, 1305, 1997.Google Scholar
10. Berreman, D. W., Phys. Rev. 130, 2193, 1963.Google Scholar
11. Barker, A. S. Jr., Phys. Rev. 132, 1474, 1963.Google Scholar