Skip to main content Accessibility help

Phase-Field Modelling of radiation induced microstructures

  • L. Luneville (a1), G. Demange (a2), V. Pontikis (a3) and D. Simeone (a2)


This work shows that realistic irradiation-induced phase separation and the resulting microstructures can be obtained via an adapted Phase Field (PF) modelling combined with atomistic Monte Carlo simulations in the pseudo-grand canonical ensemble. The last allow for calculating the equilibrium phase diagram of the silver-copper alloy, chosen as a model of binary systems with large miscibility gap and, for extracting the parameters of the excess free-energy PF functional. Relying on this methodology, the equilibrium phase diagram of the alloy is predicted in excellent agreement with its experimental counterpart whereas, under irradiation, the predicted microstructures are functions of the irradiation parameters. Different irradiation conditions trigger the formation of various microstructures consistently presented as a non-equilibrium “phase diagram” aiming at facilitating the comparison with experimental observations.



Hide All
[1] Cheng, Y., Mater. Sci. Rep. 5, 45 (1990)
[2] Simeone, D., Baldinozzi, G., Gosset, D., Mazerolles, L., Phys Rev B 70, 134116 (2004)
[3] Baldinozzi, G., Simeone, D., Gosset, D., Monnet, I., Mazerolles, L., PRB 74, 132107 (2006)
[4] Bernas, H., Attane, J. P., Heinig, K. H., Halley, D., Ravelosona, D., Marty, A., Auric, P., Chappert, C., Samson, Y., Phys. Rev. Lett. 91, 077203 (2003)
[5] Bolse, W., Mater. Sci. Eng. R. 12, 53 (1994)
[6] Toledano, P., V. Dimitriev Reconstructive Phase transition, World scientific (1996).
[7] Katchaturyan, A., Theory of structural transformation in solids, John Wiley, (1983).
[8] Allen, M., Tildesley, D., Computer simulation of liquids, Clarendon Press, Oxford, pp 212239 (1987)
[9] Briki, M., Etude du couplage entre structure et ordre chimique dans les agrégats bimétalliques, Ph. D., Université Paris Sud – Paris XI (2013)
[10] Binary alloy phase diagram, Massalski, T., Editor in chief, vol1, Ohahio (1990)
[11] Cross, M. and Hohenberg, P., Rev Mod. Phys. 65, 851 (1993)
[12] Simeone, D., Demange, G., Luneville, L., Phys. Rev. E 88(3), 032116 (2013)
[13] Martin, G., Phys. Rev. B 30, 1424 (1984)
[14] Simeone, D., Luneville, L., Serruys, Y., Phys. Rev. E 82, 011122 (2010)
[15] Podzorov, K., Luneville, L., Hayoun, M., Stoller, R., Simeone, D., Nucl, J.. Mat 458, 168 (2015).
[16] Enrique, R., Nordlung, K., Averbach, R., Bellon, P., J. of Appl. Phys. 93(5), 2917, (2003)
[17] Glotzer, S., Coniglio, A., Phys. Rev. E 50(5), 4241 (1994)
[18] Butrymowicz, B., Manning, J., Read, M., J. Phys. Chem. Ref. Data, vol 3(2) (1974)
[19] Wei, L., Averback, R., J of Appl. Phys. 81, 613 (1997)



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed