Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T03:08:47.504Z Has data issue: false hasContentIssue false

Phase Transitions Near Surfaces Studied By Grazing Incidence Diffraction of X-Rays

Published online by Cambridge University Press:  22 February 2011

L. Mailander
Affiliation:
Sektion Physik, Universitat Munchen, D-8000 Munchen 22, FRG
H. Dosch
Affiliation:
Sektion Physik, Universitat Munchen, D-8000 Munchen 22, FRG
J. Peisl
Affiliation:
Sektion Physik, Universitat Munchen, D-8000 Munchen 22, FRG
R. L. Johnson
Affiliation:
Universitat Hamburg, D-2000 Hamburg 50, FRG
Get access

Abstract

We review two different experiments in order to demonstrate the power of grazing incidence diffraction of x-rays in studying phase transitions near surfaces and to show that it is well suited to get information on structural details even from subsurface layers: We have measured the near surface critical scattering at the continuous order disorder transition of an Fe3Al single crystal which provides information on modifications of critical behavior of a bulk transition near a surface. These modifications are detectable to a considerable depth due to the diverging range of correlations. We determined three different critical surface exponents which allow, for the first time, to confirm scaling laws for near surface critical behavior.- The experiment at a (100) surface of a discontinuous ordering Cu3Au single crystal shows that the surface is wetted by a disordered layer below the transition temperature. By means of the adjustable depth sensitivity of grazing incidence scattering we were able to demonstrate that the thickness of this layer increases logarithmically when approaching the transition temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dosch, H., Mailander, L., Lied, A., Peisl, J., Grey, F., Johnson, R. L., Krummacher, S., Phys.Rev.Lett. 60, 2382 (1988)Google Scholar
2. Mailander, L., Dosch, H., Peisl, J., Johnson, R. L., Phys.Rev.Lett. 64, 2527 (1990)Google Scholar
3. Vineyard, G. H., Phys. Rev.B 26,4146 (1982)Google Scholar
4. Dietrich, S., Wagner, H., Z.Phys.B 56, 207 (1984)Google Scholar
5. Binder, K. in Phase Transitions and Critical Phenomena Vol.8, ed. Domb, C. and Lebowitz, J (Academic, N.Y.) (1983); H. Diehl, in Phase Transitions and Critical Phenomena Vol.8, ed. C. Domb and J Lebowitz (Academic, N.Y.) Vol10, (1985)Google Scholar
6. Guttman, L., Schnyders, H. C., Araj, G. J., Phys.Rev.Lett 22, 517 (1969); L. Guttman, H. C. Schnyders, Phys.Rev.Lett. 22 520 (1969)Google Scholar
7. Gompper, G., Z.Phys.B 62, 357 (1986)Google Scholar
8. Dosch, H., Phys.Rev.B 35, 2137 (1987)Google Scholar
9. Lipowsky, R., Spaeth, W., Phys.Rev.B 28, 3983 (1983)CrossRefGoogle Scholar
10. Lipowsky, R., Ferroelectrics 73, 69 (1987)Google Scholar
11. Sundaram, V. S., Farrel, B., Alben, R.S., Robertson, W.D., Phys.Rev.Lett. 31, 1136 (1973)Google Scholar
12. McRae, E. G., Malic, R.A., Surf.Sc. 148,551 (1984)CrossRefGoogle Scholar
13. Alvarado, S. F., Campagna, M., Fattah, A., Uelhoff, W., Z.Phys.B 66, 1136 (1987)Google Scholar
14. Frenken, J. M., Veen, J. F. van der, Phvs.Re.Lett. 54, 134 (1984)Google Scholar