Skip to main content Accessibility help
×
Home

Phase Transitions in Octanethiol-Capped Ag, Au and CdS Nanocluster Assemblies

  • A. V. Ellis (a1), K. Vijayamohanan (a1) (a2), C. Ryu (a3) and G. Ramanath (a1)

Abstract

We describe phase transitions in assemblies of octanethiol (OT)-capped nanoclusters of Ag and Au and CdS of sizes ranging from 2 to 5 nm, created by a new variant of the Brust synthesis method, without the use of phase transfer agents. We probed the stability of these assemblies by a combination of UV-Visible spectrometry, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and in situ polarized microscopy (PLM). Our results show that Ag nanoclusters form a crystalline assembly at ambient temperatures. Upon heating, these assemblies undergo two reversible phase transitions corresponding to melting of (i) a phase comprised of excess thiols that are not linked to the nanoclusters, and (ii) the nanocluster assembly, at ∼60 and 124 °C, respectively. In contrast, Au nanocluster assemblies are softer, waxy solids, and show sub-zero melting transitions. Both these assemblies show no observable mass loss up to ∼180 °C. Cds nanocluster assemblies are also waxy solids, but show a nonreversible melting transition at 137 °C, with simultaneous mass loss due to OT desorption. From our results the thermal stability of the nanoclusters was OT-Ag > OT-Au > OT-CdS.

Copyright

References

Hide All
1. Aldana, J., Wang, A. and Peng, X., J. Am. Chem. Soc. 123, 8844 (2001).
2. Kim, S. –H., Medeiros-Ribeiro, G., Ohlberg, D. A. A., Stanley Williams, R. and Heath, J. R., J. Phys. Chem. B. 103, 10341, (1999).
3. Schriffrin, D. J., MRS Bulletin, Dec, 1015, (2001).
4. Kulakovich, O., Strekal, N., Yaroshevich, A., Maskevich, S., Gaponenko, S., Nabiev, I., Woggon, U. and Artemyev, M., Nano Lett. 2, 1449 (2002).
5. Lee, T., Liu, J., Chen, N-P., Andres, R. P., Janes, D. B. and Reifenberger, R, J. Nanoparticle Res. 2, 345, (2000).
6. Jensen, T. R., Schatz, G. C. and Van Duyne, R. P., J. Phys. Chem B. 103, 2394, (1999).
7. Sandhyarani, N., Antony, M. P., Selvam, G. P. and Pradeep, T., J. Chem. Phys. 113, 9794 (2000).
8. Sandhyarani, N. and Pradeep, T., Chem. Mater. 12, 1755 (2000).
9. Laininis, P. E. and Whitesides, G. M., J. Am. Chem. Soc. 114, 9022 (1992).
10. Mekhalif, Z., Riga, J., Pireaux, J. –J. and Delhalle, J., Langmuir 13, 2285 (1997).
11. Brust, M., Walker, M., Bethell, D., Schriffrin, D. J. and Whyman, R., J. Chem. Soc., Chem. Commun. 801 (1994).
12. Strähle, J. in Homonuclear and Heteronuclear Cluster Compounds of Gold in: Metal Clusters in Chemistry, edited by Braunstein, Herausgeber P., Oro, L. A. and Raithby, P. R., (Wiley-VCH, Germany, 1999) pp. 535560.
13. Templeton, A. C., Wuelfing, W. P. and Murray, R. W., Acc. Chem. Res. 33, 27 (2000).
14. Alivisatos, A. P., Science 271, 933 (1996).
15. Wang, X., Synthesis and Characterization of Cadmium Sulfide Nanoclusters, (Master's Thesis, Rensselaer Polytechnic Institute, Troy, NY, USA 2002).
16. Ellis, A.V., Vijayamohanan, K., Ryu, C., Goswami, R. and Ramanath, G. (2002) (Unpublished).
17. Meulenberg, R. W. and Strouse, G. F., J. Phys. Chem. B 105, 7438 (2001).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed