Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-04T17:58:52.306Z Has data issue: false hasContentIssue false

Phase Transformations in a-Si/Ni/C-Si Structures with Different Interfacial Ni Layer Thicknesses

Published online by Cambridge University Press:  21 February 2011

A.Yu. Kuznetsov
Affiliation:
Institute of Microelectronics Technology, Chernogolovka, Moscow Region, 142432, Russia
I. I. Khodos
Affiliation:
Institute of Microelectronics Technology, Chernogolovka, Moscow Region, 142432, Russia
J. Linnros
Affiliation:
Royal Institute of Technology, Solid State Electronics, P.O. 1298, S-164 28 Kista-Stockholm, Sweden
B. Mohadjeri
Affiliation:
Royal Institute of Technology, Solid State Electronics, P.O. 1298, S-164 28 Kista-Stockholm, Sweden
E. V. Monakhov
Affiliation:
Institute of Nuclear Physics, Moscow State University, 119899 Moscow, Russia
B. G. Svensson
Affiliation:
Royal Institute of Technology, Solid State Electronics, P.O. 1298, S-164 28 Kista-Stockholm, Sweden
Get access

Abstract

Planar low-temperature solid phase epitaxy of amorphous silicon in a-Si/10nmNiSi/c-Si structure was observed. The crystallization rate is well described by the arrhenius-type expression with the activation energy and preexponencial factor deduced from our measurements of 1.7 eV and 2.4×1012 nm/min, respectively. NiSi2 formation at the NiSi2/a-Si interface is believed to be the limiting stage of the transformation. The structures with thicker Ni-reached interfacial layer perform much poorer a-Si epitaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]. d'Heurle, F.M., J. Mat. Res. 3, 167 (1986).Google Scholar
[2]. Holloway, K., Sinclair, R. and Nathan, M., J. Vac. Sci. Technol. A7, 1479 (1989).Google Scholar
[3]. Clevenger, L.A. and Thompson, C.V., J. Appl. Phys. 67, 1325 (1990).Google Scholar
[4]. Lien, C.-D., Nicolet, M.-A., Lau, S.S., Phys. Stat. Sol. (a) 81, 123 (1984).Google Scholar
[5]. Mohadjeri, B., Linnros, J., Svensson, B.G. and Ostling, M., Phys. Rev. Lett. 68, 1872 (1992).Google Scholar
[6]. Olson, G.L. and Roth, J.A., Mat. Sci. Rep. 3, 1 (1988).Google Scholar
[7]. Jacobson, D.C., Poate, J.M., Olson, G.L., Appl. Phys. Lett. 48, 119 (1986).Google Scholar
[8]. Custer, J.S., Thompson, M.O., Eaglesman, D.C., Jacobson, D.C., Poate, J.M., Liefting, R.J. and Saris, F.W., Mat. Res. Soc. Symp. Proc. 205, 69 (1992).Google Scholar
[9]. Kuznetsov, A. Yu. and Svensson, B.G., to appear in Nucl. Instr. Meth. B.Google Scholar
[10]. Hayzelden, C., Batstone, J.L. and Cammarata, R.C., Appl. Phys. Lett. 60, 1108 (1992).Google Scholar
[11]. Hayzelden, C. and Batstone, J.L., J. Appl. Phys. 73, 8279 (1993).Google Scholar
[12]. Bohac, V. and Shirokov, D.M., Nucl. Instr. Meth. B 84, 497 (1994).Google Scholar
[13]. Ma, E., Meng, W.J., Jonson, W.L., Nicolet, M.-A., Appl. Phys. Lett. 53, 2033 (1988).Google Scholar
[14]. Kuznetsov, A.Yu., Khodos, I.I., Mordkovich, V.N., Vyatkin, A.F., Chechenin, N.G., Nucl. Instr. Meth. B 80/81, 990 (1993)Google Scholar
[15]. Kuznetsov, A. Yu., Khodos, I.I., Mordkovich, V.N., Vyatkin, A.F., Appl. Sur. Sci. 73, 203 (1993).Google Scholar
[16]. Mey, S., Z. Metallkd. 77, 85 (1988).Google Scholar
[17]. Donovan, E.P., Spaepen, F., Trunbull, D., Poate, J.M., Jacobson, D.C., Appl. Phys. Lett. 55, 852 (1989).Google Scholar
[18]. Rigway, M.C., Elliman, R.G., Thornton, R.P. and Williams, J.S., Appl. Phys. Lett. 56(20), 1992 (1990)Google Scholar
[19]. Erokhin, Yu.N., Grotzschel, R., Oktyabrsky, S.R., Roorda, S., Sinke, W., Vyatkin, A., Mat. Sci. Eng. B 12, 103 (1992)Google Scholar