Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-19T02:35:27.599Z Has data issue: false hasContentIssue false

The γ→α Phase Transformation in Al2O3

Published online by Cambridge University Press:  21 February 2011

D. S. Tucker
Affiliation:
Atlantic Richfield, Materials Development Lab, 27017 Prairie Street, Chatsworth, CA 91311
J. J. Hren
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
Get access

Extract

The primary objective of this research was to deduce the mechanisms of the γ to α transformation of Al2O3. The specimens studied were from spherical powder precipitated from sulfate solutions and thin films prepared by low temperature oxidation of Al. The primary experimental technique employed was the transmission electron microscope. Since alumina is so important commercially, there is a body of literature on both the mechanism and kinetics of the transformation. A brief review of the most relevant publications is thus essential.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stumpf, H. C., Russell, A. S., Newsome, J. W. and Tucker, C. M., Ind. Eng. Chem., 42, 13981403 (1950).Google Scholar
2. Saalfield, H., N. Jaheb. F. Min. Ab., 95, 188 (1960).Google Scholar
3. Ervin, G., Acta. Cryst., 5, 103 (1952).Google Scholar
4. Kalinina, A. M., Russ. Jnl. of Inorg. Chem., 4, 568573 (1959).Google Scholar
5. Iler, R. K., J. Am. Cer. Soc., 44, 618624 (1961).CrossRefGoogle Scholar
6. Buerger, M. J., Pergammon Press, Oxford, 54 (1965).Google Scholar
7. Badkar, P. A., Bailey, J. E., J. Mat. Sci., 11, 17941806 (1976).Google Scholar
8. Kronberg, M. L., Acta. Met., 5, 507 (1957).CrossRefGoogle Scholar
9. Bye, G. C., Simpkin, G. T., J. Am. Cer. Soc., 57(8) (1974).Google Scholar
10. Kachi, S., Momiyama, K., Shimizu, S., J. Phys. Soc., Jap., 18(1), 106116 (1963).Google Scholar
11. Ridge, M. J., Molony, B. and Boell, G. R., J. Chem. Soc. Cal., 4, 594597 (1967).CrossRefGoogle Scholar
12. Clark, P. W. and White, J., Trans. Brit. Ceram. Soc., 49, 305333 (1950).Google Scholar
13. Yangjuo-Ching, and Yentungsheng, , Kwei Suan. Hsueh. Pao, 5, 111 (1966).Google Scholar
14. Yangida, H., Yamaguchi, G. and Kubota, J., J. Cer. Soc. Jap., 74, 371377 (1966).Google Scholar
15. Steiner, C., Ph.D. Thesis, Lehigh University (1972).Google Scholar
16. Kato, E. and Daimon, K., J. Am. Cer. Soc., 62, 313 (1979).Google Scholar
17. Yoldas, B. E., Am. Cer. Soc. Bull., 54(3), 289290 (1975).Google Scholar
18. Dynys, F. W., Halloran, J. W., J. Am. Cer. Soc., 65(9), 442448 (1982).CrossRefGoogle Scholar
19. Iler, R. K., J. Am. Cer. Soc., 47, 339341 (1964).CrossRefGoogle Scholar
20. Wakao, Y., J. Hibino, Nagoya. Kogyo. Gijutsu. Shikenko, Hahoku, 11, 588595 (1962).Google Scholar
21. Fink, G., J. Inorg. Nucl. Chem., 30, 5961 (1968).CrossRefGoogle Scholar
22. Sacks, M., University of Florida, private communication.Google Scholar
23. Tucker, D., Kenik, E. A. and Hren, J. J., Proc. 41st Ann. EMSA Meeting, 76 (1983).Google Scholar
24. Oak Ridge National Laboratories, Oak Ridge, TN 37830.Google Scholar
25. Jenkins, E. J., Tucker, D. S. and Hren, J. J., Proc. 41st Ann. EMSA Meeting, 74 (1983).Google Scholar