Skip to main content Accessibility help

Phase Mixture Models for Metallic Materials with Submicrometer Grain Size

  • Yuri Estrin (a1), Hyoung Seop Kim (a2) and Mark Bush (a3)


Phase mixture models describing the mechanical properties of submicrometer grained metals are presented. In this approach, grain boundaries or cell walls are treated as a separate phase. Two cases are considered: the mechanical response of an ultrafine grained material and the process of grain refinement by equal channel angular pressing. Model predictions with regard to the evolution of the microstructure, strength and texture are verified for Cu.



Hide All
1. Morris, D. G., “Mechanical Behaviour of Nanostructured Materials”, Materials Science Foundations, Vol. 2., (Trans Tech Publications Ltd, 1998).
2. Kumar, K. S., van Swygenhoven, H. and Suresh, S., Acta mater. 51, 5743 (2003).
3. Estrin, Y, Kim, H. S. and Bush, M. B., “Phase Mixture Models for Metallic Nanomaterials”, Encyclopedia of Nanoscience and Nanotechnology, ed. Nalwa, H. S., (American Scientific Publishers, 2004) (in press).
4. Yamakov, V., Wolf, D., Phillpot, S. R., Mukherjee, A. K. and Gleiter, H., Nature Materials 1, 45 (2002).
5. Kim, H. S., Estrin, Y. and Bush, M. B., Acta Mater. 48, 493 (2000).
6. Kim, H. S., Bush, M. B. and Estrin, Y., Mater. Sci. Eng. 276A, 175 (2000).
7. Kim, H. S., Estrin, Y. and Bush, M. B., Mater. Sci. Eng. 316A, 195 (2001).
8. Segal, V. M., Mater. Sci. Eng. 197A, 157 (1995).
9. Valiev, R. Z., Islamgaliev, R. K. and Alexandrov, I. V., Prog. Mater. Sci. 45, 103 (2000).
10. Toth, L., Molinari, A. and Estrin, Y., J. Eng. Mater. Techn. 124, 71 (2002).
11. Baik, S. C., Estrin, Y., Kim, H. S. and Hellmig, R. J., Mater. Sci. Eng. 351A, 86 (2003).
12. Yamakov, V., Wolf, D., Phillpot, S. R. and Gleiter, H., Acta Mater. 50, 61 (2002).
13. Estrin, Y., “Dislocation Density Related Constitutive Modeling”, Unified Constitutive Laws of Plastic Deformation, ed. Krausz, A. S., and Krausz, K. (Academic Press 1996), pp. 69106.
14. Estrin, Y. and Mecking, H., Acta Metall. 32, 57 (1984).
15. Wang, N., Wang, Z., Aust, K.T., and Erb, U., Acta Mater. 43, 519 (1995).
16. Frost, H. J. and Ashby, M. F., “Deformation Mechanism Maps, “The Plasticity and Creep of Metals and Ceramics” (Pergamon Press, 1982).
17. Gleiter, H., Prog. Mater. Sci. 33, 224 (1989).
18. Kim, H. S. and Estrin, Y., Appl. Phys. Lett. 79, 4115 (2001).
19. Estrin, Y. and Kim, H. S., “Strength and Plasticity of Ultrafine Grained Metallic Materials”, Ultrafine Grained Materials II, Proc. TMS Annual Meeting, Seattle, February 2002, eds. Zhu, Y., Langdon, T. G., Mishra, R. S., Semiatin, S. L., Saran, M. J., and Lowe, T. C., pp. 557565.
20. Estrin, Y., Gottstein, G., Rabkin, E. and Shvindlerman, L. S., Scripta Mater. 43, 141 (2000).
21. Estrin, Y., Gottstein, G. and Shvindlerman, L. S., Scripta Mater. (in press).
22. Baik, S. C., Hellmig, R. J., Estrin, Y. and Kim, H. S., Z. Metallkunde 94, 754 (2003).
23. Baik, S. C., Estrin, Y., Hellmig, R. J., Jeong, H. T., Brokmeier, H. G. and Kim, H. S., Z. Metallkunde (in press).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed