Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:45:11.071Z Has data issue: false hasContentIssue false

Phase Inversion Molecularly Imprinting of Uracil Targeted Membranes Made of Polyacrylonitrile Copolymers Having Methacrylic Acid and Acrylic Acid Segments for Recognition and Permselective Binding

Published online by Cambridge University Press:  01 February 2011

Shao Ling Xia
Affiliation:
Material School of Zhengzhou University, Zhengzhou 450052, P. R. China
Hong Ying Wang
Affiliation:
Material School of Zhengzhou University, Zhengzhou 450052, P. R. China
Takaomi Kobayashi
Affiliation:
Department of Chemistry, Nagaoka University of Technology, 1603–1 Kamitomioka, Nagaoka, JAPAN 940–2188
Get access

Abstract

Polyacrylonitrile having methacrylic acid [P(AN-co-MAA)] and acrylic acid [P(AN-co-AA)] was used for phase inversion imprinting of uracil (URA). Resultant imprinted membranes had porous morphology and showed permselective binding of URA, when 32 μM URA aqueous solution was permeated under pressure gradient of 100 Pa across the membrane. Under the circumstance, the imprinted P(AN-co-MAA) membrane bound 7.9 μmol/g of URA with 8.4×10−6 m3/m2·s of volume flux. The imprinted P(AN-co-AA) membrane showed loose selectivity relative to the P(AN-co-MAA) membrane. Binding behavior of URA and dimethyluracil (DMURA) was also compared in both imprinted membranes. Evidence was presented that P(AN-co-MAA) with methacrylic segments was effective for URA imprinting and resulted in high URA selectivity in the permselective binding experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Mosbach, K., Trends Biochem. Sci., 19(1) (1994) 9.Google Scholar
[2] Sellergren, B., Ekberg, B., Mosbach, K., J. Chromatogr., 347 (1985) 1.Google Scholar
[3] Fischer, L., Muller, R., Ekberg, B., Mosbach, K., J. Am. Chem. Soc., 113 (1991) 9358.Google Scholar
[4] Kobayashi, T., Wang, H.Y., Fujii, N., Chem. Lett., (1995) 927.Google Scholar
[5] Krotz, J. M., Shea, K.J., J. Am. Chem. Soc., 118 (1996) 8754.Google Scholar
[6] Yoshikawa, M., Izumi, J., Kitao, T., Koya, S., Sakamoto, S., J. Membrane Sci., 108 (1995) 171.Google Scholar
[7] Piletsky, S. A., Panasyuk, T. L., Piletskaya, E. V., Nicholls, I. A., Ulbricht, M., J. Membrane Sci. 157 (1999) 263.Google Scholar
[8] Wang, H.Y., Kobayashi, T., Fujii, N., Langmuir, 12 (1996) 4850.Google Scholar
[9] Kobayashi, T., Fukaya, T., Abe, M., Fujii, N., Langmuir, 18 (2002) 2866.Google Scholar
[10] Kobayashi, T., Onodera, T., Ohta, M., Mater. Res. Soc. Proc. MembranePreparation, Properties and Applications, 752 (2003) 39.Google Scholar
[11] Reddy, P. S., Kobayashi, T., Abe, M., Fujii, N., European Polym. J., 38 (2002) 521.Google Scholar
[12] Kobayashi, T., Reddy, P S., Ohta, M., Fujii, N., Chem. Mater., 14 (2002) 2499.Google Scholar
[13] Oak, M. S., Kobayashi, T., Wang, H. Y., Fujii, N., J. Membrane Sci., 123 (1997) 185.Google Scholar