Skip to main content Accessibility help
×
Home

Phase Constituent and Reverse Martensitic Transformation Temperature of PtTi-CoTi Diffusion Couple Heat-Treated at 1373K

  • Hideki Hosoda (a1), Satoshi Tsutsumi (a1), Masaki Tahara (a1), Tomonari Inamura (a1), Kenji Goto (a2), Hiroyasu Kanetaka (a3) and Yoko Yamabe-Mitarai (a4)...

Abstract

The reverse martensitic (austenite) transformation temperatures (A s) were investigated using a diffusion couple of PtTi and CoTi with a continuous compositional gradient. It was found that PtTi and CoTi form a complete solid solution of (Pt, Co)Ti at 1373K. Surface relief was formed by heating due to the austenite transformation. Judging from the formation of the surface patterns and the corresponding chemical compositions, A s monotonously decreases with increasing Co content at a rate of -70K/at%Co, and A s is estimated to be close to room temperature (RT) when the Co concentration is 15at%Co. Besides, micro Vickers hardness values measured at RT are minimized around 15at%Co.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Phase Constituent and Reverse Martensitic Transformation Temperature of PtTi-CoTi Diffusion Couple Heat-Treated at 1373K
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Phase Constituent and Reverse Martensitic Transformation Temperature of PtTi-CoTi Diffusion Couple Heat-Treated at 1373K
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Phase Constituent and Reverse Martensitic Transformation Temperature of PtTi-CoTi Diffusion Couple Heat-Treated at 1373K
      Available formats
      ×

Copyright

References

Hide All
1. Donkersloot, H. C. and Van Vucht, J. H. N., J. Less-Common Met., 20, 8391, (1970).
2. Biggs, T., Witcomb, M. J. and Cornish, L. A., Mat. Sci. Eng. A 273275, 204207 (1999).
3. Yamabe-Mitarai, Y., Hara, T., Miura, S. and Hosoda, H., Intermetallics, 18, 22752280 (2010).
4. Biggs, T., Cortie, M. B., Witcomb, M. J. and Cornish, L. A., Metall. Mater. Trans.., 23A, 18811887 (2001).
5. Khachin, V. N., Pushin, V. G., Sivokha, V. P., Kondrat’yev, V. V., Muslov, S. A., Voronin, V. P., Zolotukhin, Yu. S. and Yurchenko, L. I., Phys. Met. Metall., 67, 125135 (1989).
6. Lindquist, P. G. and Wayman, C. M., “The Engineering Aspects of Shape Memory Alloys”, edited by Duerig, T. W., Melton, K. N., Stöckel, D. and Wayman, C. M., Butterworth-Heinemann, London, 5868 (1990).
7. Takahashi, Y., Tsuji, M., Sakurai, J., Hosoda, H., Wakashima, K. and Miyazaki, S., Trans. Mat. Res. Soc. Jpn., 28, 627630 (2004).
8. Tsuji, M., Hosoda, H., Wakashima, K. and Yamabe-Mitarai, T., Mat. Res. Soc. Symp., 753, BB.5.52.16 (2003).
9. Wadood, A., Takahashi, M., Takahashi, S., Hosoda, H. and Yamabe-Mitarai, Y., Mat. Sci. Eng. A 564, 3441 (2013).
10. Yamabe-Mitarai, Y., Hara, T., Miura, S. and Hosoda, H., Mat. Trans., 47, 650657 (2006).
11. Yamabe-Mitarai, Y., Hara, T., Miura, S. and Hosoda, H., Mat. Sci. Forum, 19871990, 475-479, (2007); ibid., 539-543, 3273–3278(2007).
12. Yamabe-Mitarai, Y., Hara, T., Kitashima, T., Miura, S. and Hosoda, H., J. Alloys Comp.,577, suppl.1, S399S403 (2013).
13. Noebe, R., Gaydosh, D., Padula, S. II, Garg, A, Biles, T. and Nathal, M., SPIE Conf. Proc.,5761, Bellingham, WA, (2005): SPIE.
14. Kovarik, L., Yang, F., Garg, A., Diercks, D., Kaufman, M., Noebe, R. D. and Mills, M. J., Acta Mater., 58, 46604673 (2010).
15. Hosoda, H., Tsuji, M., Mimura, M., Takahashi, Y., Wakashima, K. and Yamabe-Mitarai, T., Mat. Res. Soc. Symp., 753, BB.5.51.16 (2003).
16. Aoki, T., Tahara, M., Goto, K., Mitarai, Y., Kanetaka, H., Inamura, T. and Hosoda, H., Adv. Mater. Res., 922, 2530 (2014).
17. Gupta, K. P., J. Phase Equilibria, 20, 6572 (1999).
18. Hosoda, H., Hanada, S., Inoue, K., Fukui, T., Mishima, Y. and Suzuki, T., Intermetallics, 6, 291301 (1998).
19. Takasugi, T. and Izumi, O., J. Mater. Sci., 23, 12651273 (1988).
20. Yamamoto, T, Morizono, Y., Honjyo, J. and Nishida, M., Mat. Sci. Eng. A 438440, 327331 (2006).
21. Du, Y., Xu, H., Zhou, Y., Quyang, Y. and Jin, Z., Mat. Sci. Eng. A 448, 210215 (2007).
22. Ducher, R., Kainuma, R. and Ishida, K., J. Alloys and Comp., 466, 208213, (2008).
23. Okimori, Y., Inamura, T., Hosoda, H. and Wakashima, K., Mat. Trans., 49, 19982005 (2008).
24. Changfa, L., Yuping, R. and Gaowu, Q., Adv. Mater. Res.., 299300, 224227 (2011).
25. Shastry, V. V., Divya, V. D., Azeem, M. A., Paul, A., Dye, D. and Ramamurty, U., Acta Mater., 61, 57335742 (2013).
26. Perkins, J., Edwards, G. R., Such, C. R., Johnson, J. M. and Allen, R. R., Shape Memory Effect in Alloys, ed. J. Perkins, , The Metall. Soc. AIME Proc., Plenum Press, NY, 273-299 (1975).
27. Duerig, T. W., Albrecht, J., Richter, D. and Fischer, P., Acta Mater., 30, 21612172 (1982).

Keywords

Phase Constituent and Reverse Martensitic Transformation Temperature of PtTi-CoTi Diffusion Couple Heat-Treated at 1373K

  • Hideki Hosoda (a1), Satoshi Tsutsumi (a1), Masaki Tahara (a1), Tomonari Inamura (a1), Kenji Goto (a2), Hiroyasu Kanetaka (a3) and Yoko Yamabe-Mitarai (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed