Skip to main content Accessibility help

Persistent Photocurrent in InP Nanowires Heteroepitaxially Bridged Between Single Crystal Si Surfaces

  • Ataur Sarkar (a1), M. Saif Islam (a2), Sungsoo Yi (a3) and A. Alec Talin (a4)


Room temperature photoelectrical characterization with 325-nm ultraviolet and 633-nm visible laser excitations is performed on lateral p-type InP nanowires bridged between vertically oriented heavily p-doped single crystal silicon electrodes. Experimental results under 5 V bias demonstrate persistent photoconductivity through a slow decay of excess photocurrent with relaxation times ∼110 s and ∼50 s for the UV and visible laser illuminations, respectively. Persistent photocurrent originates from the long recombination time due to carrier trapping in vacancies, defect centers, and surface states in the InP nanowires. The study opens a new understanding of trap physics of nanowire heterostructures, a critical investigation for applications of these materials in photonic devices.



Hide All
[1] Sarkar, A., VJ, L., Kobayashi, N. P., Straznicky, J., Wang, S.-Y., Williams, R. S., and Islam, M. S., “Persistent photoconductivity of InP nanowire photoconductors bridged between amorphous silicon electrodes,” Proc. of SPIE, vol. 6768, pp. 67680P–1, 2007.
[2] Beadie, G., Rabinovich, W. S., Wickenden, A. E., Koleske, D. D., Binari, S. C., and Freitas, J. A., “Persistent photoconductivity in n-type GaN,” Applied Physics Letters, vol. 71, pp. 10921094, Aug 25 1997.
[3] Bonfiglio, A., Traetta, G., Lomascolo, M., Passaseo, A., and Cingolani, R., “Origin of persistent photocurrent in GaN/AlGaN multiquantum wells,” Journal of Applied Physics, vol. 89, pp. 57825784, May 15 2001.
[4] Chen, H. M., Chen, Y. F., Lee, M. C., and Feng, M. S., “Persistent photoconductivity in n-type GaN,” Journal of Applied Phsics, vol. 82, pp. 899901, Jul 15 1997.
[5] Hirsch, M. T., Wolk, J. A., Walukiewicz, W., and Haller, E. E., “Persistent photoconductivity in n-type GaN,” Applied Physics Letters, vol. 71, pp. 10981100, Aug 25 1997.
[6] Hung, H., Chen, C. H., Chang, S. J., Kuan, H., Lin, R. M., and Liu, C. H., “Kinetics of persistent photoconductivity in InGaN epitaxial films grown by MOCVD,” Journal of Crystal Growth, vol. 298, pp. 246250, Jan 2007.
[7] Lampert, M. A. and Mark, P., Current Injection in Solids: Academic Press Inc., USA, 1970.
[8] Cai, S., Parish, G., Dell, J. M., and Nener, B. D., “Contribution of hole trap to persistent photoconductivity in n-type GaN,” Journal of Applied Physics, vol. 96, pp. 10191023, Jul 15 2004.
[9] Chung, S. J., Karunagaran, B., Velumani, S., Hong, C. H., Lee, H. J., and Suh, E. K., “Photoluminescence and persistent photoconductivity of AlxGa1-xN/GaN heterostructures,” Applied Physics A-Materials Science & Processing, vol. 86, pp. 521524, Mar 2007.
[10] Li, J. Z., Lin, J. Y., Jiang, H. X., Salvador, A., Botchkarev, A., and Morkoc, H., “Nature of Mg impurities in GaN,” Applied Physics Letters, vol. 69, pp. 14741476, Sep 2 1996.
[11] Qiu, C. H. and Pankove, J. I., “Deep levels and persistent photoconductivity in GaN thin films,” Applied Physics Letters, vol. 70, pp. 19831985, Apr 14 1997.
[12] Calarco, R., Marso, M., Richter, T., Aykanat, A. I., Meijers, R., Hart, A. V., Stoica, T., and Luth, H., “Size-dependent photoconductivity in MBE-grown GaN-nanowires,” Nano Letters, vol. 5, pp. 981984, May 2005.
[13] Islam, M. S., Sharma, S., Kamins, T. I., and Williams, R. S., “A novel interconnection technique for manufacturing nanowire devices,” Applied Physics A-Materials Science & Processing, vol. 80, pp. 11331140, Mar 2005.
[14] Sarkar, A., Kimukin, I., Edgar, C. W., Yi, S., and Islam, M. S., “Heteroepitaxial growth dynamics of InP nanowires on silicon,” Journal of Nanophotonics, vol. 2, pp. 115, Feb 2008.
[15] Polenta, L., Rossi, M., Cavallini, A., Calarco, R., Marso, M., Meijers, R., Richter, T., Stoica, T., and Luth, H., “Investigation on localized states in GaN nanowires,” ACS Nano, vol. 2, pp. 287292, Feb 2008.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed