Skip to main content Accessibility help
×
Home

Periodic Structures for Improved Light Management in Thin-film Silicon Solar Cells

  • Janez Krc (a1), Andrej Campa (a2), Stefan L. Luxembourg (a3), Miro Zeman (a4) and Marko Topic (a5)...

Abstract

Advanced light management in thin-film solar cells is important in order to improve the photo-current and, thus, to raise up the conversion efficiencies of the solar cells. In this article two types of periodic structures ¡V one-dimensional diffraction gratings and photonic crystals,are analyzed in the direction of showing their potential for improved light trapping in thin-film silicon solar cells. The anti-reflective effects and enhanced scattering at the gratings with the triangular and rectangular features are studied by means of two-dimensional optical simulations. Simulations of the complete microcrystalline solar cell incorporating the gratings at all interfaces are presented. Critical optical issues to be overcome for achieving the performances of the cells with the optimized randomly textured interfaces are pointed out. Reflectance measurements for the designed 12 layer photonic crystal stack consisting of amorphous silicon nitride and amorphous silicon layers are presented and compared with the simulations. High reflectance (up to 99 %) of the stack is measured for a broad wavelength spectrum. By means of optical simulations the potential for using a simple photonic crystal structure as a back reflector in an amorphous silicon solar cell is demonstrated.

Copyright

References

Hide All
1 Deckman, H.W. Wronski, C.R. Witzke, H. and Yablonovitch, E. Appl. Phys. Lett. 42 (11), (1983) 968.
2 Mueller, J. Rech, B. Springer, J. and Vanecek, M. Solar Energy, 77 (2004) 917.10.1016/j.solener.2004.03.015
3 Fay, S. Dubail, S. Kroll, U. Meier, J. Ziegler, Y. Shah, A. Proc. of the 16th EU PVSEC (2000), p. 361.
4 Kambe, M. Fukawa, M. Taneda, N. Yoshikawa, Y. Sato, K. Ohki, K. Hiza, S. Yamada, A. and Konagai, M. Proc. of WCPEC-3, Osaka, 2003, p.1812.
5 Hegedus, S. S. Kaplan, R. Prog. in Photovolt: Res. Appl. 10 (2002), 257.
6 Banerjee, A. Guha, S. J. Appl. Phys. 69 No. 2 (1991) 1030.
7 Shah, A. et al., J. Non-Cryst. Solids 338-340 (2004) 639.
8 Springer, J. Poruba, A. Muellerova, L. Vanecek, M. Kluth, O. and Rech, B. J. Appl. Phys. 95 No 3 (2004) 1427.
9 Eisele, C. Nebel, C. E. and Stutzmann, M. J. Appl. Phys., 89 No 12 (2001) 7722.
10 Stiebig, H. Senoussaoui, N. Zahren, C. Hasse, C. and Mueller, J. Prog. in Photovolt: Res. Appl. 14 (2006) 13.
11 Terrazzoni-Daudrix, V., Guillet, J. Niquille, X. Feitknecht, L. Freitas, F. Winkler, P. Shah, A., Morf, R. Parriaux, O. and Fischer, D. Proc. of WCPEC-3, Osaka, 2003, p. 1596.
12 Heine, C. and Morf, R. Applied Optics, 34, 1995, p. 2476.
13 Krc, J. Zeman, M. Campa, A. Smole, F. Topic, M. Mater. Res. Soc. Symp. Proc. Vol. 910, 2006, 0910–A25.
14 Beckmann, P. and Spizzichino, A. The scattering of electromagnetic waves from rough surfaces, Pergamon Press, 1963.
15 Campa, A. Krc, J. Smole, F. Topic, M. Thin Solid Films Vol. 516/20 (2008) 6963.
16http://ab-initio.mit.edu/photons/tutorial/
17 Lee, H-Y. and Yao, T. J. Appl. Phys. 93 No. 2 (2003) 812.
18 Lee, H-Y. et al., J. Appl. Phys. 97 (2005) 103111–1.10.1063/1.1903107
19 Zeng, L. Yi, Y. Hong, C. Duan, X. and Kimerling, L. C. Mater. Res. Soc. Symp. Proc. Vol. 862, 2005, A12.3.1.
20 Krc, J. Smole, F. Topic, M. Prog. in Photovolt: Res. Appl. 11 (2003) 15.
21 Brammer, T. Huepkes, J. Krause, M. Kluth, O. Mueller, J. Stiebig, H. and Rech, B. Proc. of WCPEC-3, Osaka, 2003, p. 176.
22 Zeman, M. Swaaij, R.A.C.M.M. van, Metselaar, J.W. and Schropp, R.E.I., J. Appl. Phys. 88 (2000) 6436.
23 Stiebig, H. et al., Proc. of WCPEC-1, Hawaii, 1994, p. 603.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed