Skip to main content Accessibility help

Performance modification in solution-processed SnZnO thin film transistor

  • Dong Lim Kim (a1), Doo Na Kim, You Seung Rim, Si Joon Kim and Hyun Jae Kim (a1)...


Tin zinc oxide (SnZnO) thin film transistors (TFTs) with different component fraction fabricated by solution process were reported. Sn chloride and Zn acetate were used as precursor and the maximum annealing temperature was 500°C. The electrical characteristics of TFTs were acutely affected by the molar ratio between Sn and Zn in the lattice, and showed the highest mobility and on-to-off ratio of about 17 cm2/Vs and 2×106, respectively. The origins of the high performance were traced through both structural and electrical aspects. Sn was generally considered to offer carrier path by superposition of s orbital, but it was found that the increase of Sn fraction only below specific value in lattice contributed to increase mobility, which could be explained by the structural distortion and the defect generation. Zn atoms introduced in the lattice were necessary to control both mobility and carrier concentration. From these results, the solution-processed SnZnO TFT with high performance was suggested.



Hide All
1. Nakata, M., Takechi, K., Azuma, K., Tokumitsu, E., Yamaguchi, H., and Kaneko, S., Appl. Phys. Express 2, 021102 (2009).
2. Gupta, A., and compaan, A. D., Appl. Phys. Lett. 85 (4), 684 (2004).
3. Yabuta, H., Sano, M., Abe, K., Aiba, T., Den, T., Kumomi, H., Nomura, K., Kamiya, T., and Hosono, H., Appl. Phys. Lett. 89, 112123 (2006).
4. Kim, M., Jeong, J. H., Lee, H. J., Ahn, T. K., Shin, H. S., Park, J.-S., Jeong, J. K., Mo, Y.-G., Kim, H. D., Appl. Phys. Lett. 90, 212114 (2007).
5. Liu, S.-J., Fang, H.-W., Su, S.-H., Li, C.-H., Cherng, J.-S., Hsieh, J.-H., and Juang, J.-Y., Appl. Phys. Lett. 94, 092504 (2009).
6. Kim, G. H., Ahn, B. D., Shin, H. S., Jeong, W. H., Kim, H. J., and Kim, H. J., Appl. Phys. Lett. 94, 233501 (2009).
7. Jeong, W. H., Kim, G. H., Shin, H. S., Ahn, B. D., and Kim, H. J., Ryu, M.-K., Park, K.-B., Seon, J.-B., Lee, S. Y., Appl. Phys. Lett. 96, 093503 (2010).
8. Kim, G. H., Kim, H. S., Shin, H. S., Ahn, B. D., Kim, K. H., and Kim, H. J., Thin Solid Films 517 (14), 4007-4010 (2009).
9. Hosono, H., J. Non-Cryst. Solids 352, 851858 (2006).
10. Klasens, H. A., and Koelmans, H., Solid-state Electron. 7, 701702 (1964).
11. Presley, R. E., Munsee, C. L., Park, C.-H., Hong, D., Wager, J. F., and Keszler, D. A., J. Phys. D: Appl. Phys. 37, 2810-2813 (2004).
12. Chang, Y.-J., Lee, D.-H., Herman, G. S., and Chang, C.-H., Electrochem. Solid-State Lett. 10 (5), H135-H138 (2007).
13. Fortunato, E. M. C., Pereira, L. M. N., Barquinha, P. M. C., do Rego, A. M. Botelho, Goncalves, G., Vila, A., Morante, J. R., and Martins, R. F. P., Appl. Phys. Lett. 92, 222103 (2008).
14. Jeong, Y., Song, K., Kim, D., Koo, C. Y., and Moon, J., J. Electrochem. Soc. 156 (11), H808-H812 (2009).
15. Kim, G. H., Shin, H. S., Ahn, B. D., Kim, K. H., Park, W. J., and Kim, H. J., J. Electrochem. Soc. 156 (1), H7-H9 (2009).
16. Zhu, X., and Geis-Gerstorfer, J., Chem. Eng. Technol. 26 (10), 1084-1087 (2003).
17. Seo, S.-J., Choi, C. G., Hwang, Y. H., and Bae, B.-S., J. Phys. D: Appl. Phys. 42, 035106 (2009).
18. Kerber, S. J., Bruckner, J. J., Wozniak, K., Seal, S., Hardcastle, S., and Barr, T. L., J. Vac. Sci. Technol. A 14 (3), 1314-1319 (1996).
19. Hayashi, Y., Kondo, K., Murai, K., Moriga, T., Nakabayashi, I., Fukumoto, H., Tominaga, K., Vacuum 74, 607611 (2007).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed