Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-16T14:14:40.268Z Has data issue: false hasContentIssue false

Perfectly c-axis oriented epitaxial lead titanate thin film deposited by a hydrothermal method for a data storage medium

Published online by Cambridge University Press:  01 February 2011

Takeshi Morita
Affiliation:
Research Institute of Electrical Communication, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, Miyagi, 980–8577, Japan
Yasuo Cho
Affiliation:
Research Institute of Electrical Communication, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, Miyagi, 980–8577, Japan
Get access

Abstract

A hydrothermal method is a unique method to deposit ferroelectric thin films utilizing chemical reaction in solutions. In addition to the low reaction temperature below 200°C, its simple process procedure, automatically aligned polarization and a three-dimensional deposition are advantages. In this study, a lead titanate epitaxial thin film was obtained on a strontium ruthenate bottom electrode sputterd on strontium titanate (100). The highresolution X-ray diffraction mapping showed the film was perfectly c-axis oriented. The transmission electron microscope observation revealed that the film had no lattice dislocation at the interface between lead titanate and strontium ruthenate. A remanent polarization of 96.5μC/cm2 was measured with the single crystal-like DE hysteresis curve. The observation of a scanning nonlinear dielectric microscopy indicated that this film did not contain any defect such as an a-domain and a grain boundary even on the nano scale. With various pulse parameters, nano-domain dots were patterned and the minimum dot radius of inverted domain was 12 nm corresponding to data storage density of 1Tbit/inch2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morita, T., Sensors and Actuators 1033291 (2003).Google Scholar
2. Ledermann, N., Muralt, P., Baborowski, J., Gentil, S., Mukati, K., Cantoni, M., Seifert, A. and Setter, N., Sensors and Actuators A105162 (2003).Google Scholar
3. Guerrero, C., Roldan, J., Ferrater, C., Garcia-Cuenca, M. V., Sanchez, F. and Varela, M., Solid-State Electronics 451433 (2001).Google Scholar
4. Kim, J.H., Kim, Y., Chien, A.T., Lange, FF., FF, , J. Mater. Res. 16(6)1739(2001).Google Scholar
5. Oikawa, T., T, , Aratani, M., Saito, K., Funakubo, H., J. of crystal growth 237455 (2002).Google Scholar
6. Kanno, I., Kotera, H., Wasa, K., Matsunaga, T., Kamada, T., Takayama, R., J. of Appl. Phys. 93 (7)4091 (2003).Google Scholar
7. Kajiyoshi, K., Ishizawa, N. and Yoshimura, M., Jpn. J. Appl. Phys., 30–9B (1991) L120 Google Scholar
8. Yoshimura, M., Yoo, S.E., Hayashi, M., Ishizawa, N., Jpn. J. Appl. Phys,, 28 (1989) L2007 Google Scholar
9. Chien, A.T., Zhao, L., Colic, M., Speck, J.S. and Lange, F.F., J. Mater. Res. 133649 (1998).Google Scholar
10. Shimomura, K., Tsurumi, T., Ohba, Y. and Daimon, M., Jpn. J. Appl. Phys. 30 (9B)2174 (1991).Google Scholar
11. Morita, T., Kanda, T., Yamagata, Y., Kurosawa, M.K. and Higuchi, T., Jpn. J. Appl. Phys. 36(5B)2998 (1997).Google Scholar
12. Chien, A.T., Speck, J.S. and Lange, F.F., J. Mater. Res. 1251176 (1997).Google Scholar
13. Oledzka, M., Lencka, M.M., Pinceloup, P., Mikulka-Bolen, K., McCandlish, LE and Riman, R.E., Chem. Mater. 151090 (2003).Google Scholar
14. Morita, T., Wagatsuma, Y., Morioka, H., Funakubo, H., Nava, S. and Cho., Y., Appl. Phys. Lett. 84(25)5094 (2004).Google Scholar
15. Chien, A.T., Xu, X., Kim, J.H., Sachleben, J., Speck, J.S. and Lange, F.F., J. Mater. Res. 1483330 (1999).Google Scholar
16. Jaffe, B., Cook, W.R. and Jaffe, H.: Piezoelectric Ceramics, Academic Press, 115 (1971).Google Scholar
17. Jona, F. and Shirane, G.: Ferroelectric crystals, A Pergamon Press Book (London), (1962) 236, H.D. Megaw, Proc. Phys. Soc., 58–10 (1946)Google Scholar
18. Kakuta, K., Tsurumi, T. and Fukunaga, O., Jpn. J. Appl. Phys., 34–9B 5341 (1995).Google Scholar
19. Venevtsev, Y.N., Zhdanov, G.S., Solov'ev, S.P. and Ivanova, V.V., Krystallografiya, 4235 (1959).Google Scholar
20. Tabata, H., Murata, H.O., Kawai, T., Kawai, S. and Okuyama, M., Appl. Phys. Lett. 64428 (1994).Google Scholar
21. Koster, G., Kropman, B., Rijnders, GJHM, Blank, DHA and Rogalla, H., Appl. Phys. Lett. 732920 (1998).Google Scholar
22. Takahashi, K., Oikawa, T., Saito, K., Kaneko, S., Fujisawa, H., Shimizu, M. and Funakubo, H., Jpn. J. Appl. Phys. 415376 (2002).Google Scholar
23. Randall, J. J. and Ward, R., J. Amer. Chem. Soc. 81(1959) 2629 Google Scholar
24. Jona, F. and Shirane, G.: Ferroelectric crystals, A Pergamon Press Book (London), 236 (1962).Google Scholar
25. Cho, Y., Fujimoto, K., Hiranaga, Y., Wagatsuma, Y., Onoe, A., Terabe, K. and Kitamura, K., Appl. Phys. Lett. 814401 (2002).Google Scholar
26. Hiranaga, Y., Wagatsuma, Y. and Cho, Y., Jpn. J. Appl. Phys. 43–4B(2004) L569L571 Google Scholar
27. Cho, Y., Fujimoto, K., Hiranaga, Y., Wagatsuma, Y., Onoe, A., Terabe, K. and Kitamura, K., Appl. Phys. Lett. 81(2002) 4401.Google Scholar