Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T02:59:29.199Z Has data issue: false hasContentIssue false

Patterned Nanoparticle Assembly as Novel Chemical and Biological Platforms

Published online by Cambridge University Press:  15 March 2011

M.M. Maye
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902
J. Luo
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902
L. Han
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902
N. Kariuki
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902
F.X. Zhang
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902
C.J. Zhong
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902
Get access

Abstract

The ability to self-assemble nanoparticles into thin films and subsequently characterize the structural or morphological responses to interfacial chemical/biological reactivity is increasingly important. Surface patterning and tailoring us ing nanoparticle assemblies are expected to provide such abilities for selective immobilization and chemical and biological recognition. We describe herein recent results of an investigation of hydrogen-bonding based self-assembly of core-shell nanoparticles onto monolayer-patterned surfaces, and its potential utility for in-situ atomic force microscopic characterizations of interfacial chemical and biological reactivities. This system is potentially useful for immunoassays based on topographical height changes with well-defined internal morphological standard.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.(a) Templeton, A. C., Wuelfing, W. P., Murray, R. W.; Acc. Chem. Res., 33, 27, (2000) and references therein.Google Scholar
(b) Kiely, C. J., Fink, J., Brust, M., Bethell, D., Schiffrin, D. J., Nature, 396, 444 (1998).Google Scholar
(c) Whetten, R. L., Khoury, J. T., Alvarez, M. M., Murthy, S., Vezmar, I., Wang, Z. L., Stephens, P. W., Cleveland, C. L., Luedtke, W. D., Landman, U.; Adv. Mater. 8, 428 (1996),Google Scholar
2.(a) Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., Whyman, R., Chem. Commun., 801. (1994).Google Scholar
(b) Hostetler, M. J., Wingate, J. E., Zhong, C. J., Harris, J. E., Vachet, R. W., Clark, M. R., Londono, J. D., Green, S. J., Stokes, J. J., Wignall, G. D., Glish, G. L., Porter, M. D., Evans, N. D., Murray, R. W., Langmuir, 14, 17, (1998)Google Scholar
3.(a) Maye, M. M., Zheng, W. X., Leibowitz, F. L., Ly, N. K., Zhong, C. J., Langmuir, 16, 490, (2000)Google Scholar
(b) Maye, M. M., Zhong, C. J., J. Mater. Chem., 10, 1895. (2000)Google Scholar
4.(a) Bethell, D., Brust, M., Schiffrin, D.J., Kiely, C., J. Electroanal. Chem. 409, 137, (1996),Google Scholar
(b) Mbindyo, J. K. N., Reiss, B. D., Martin, B. R., Keating, C. D., Natan, M. J., Mallouk, T. E., Adv. Mater., 13, 249. (2001).Google Scholar
(c) Templeton, A. C., Wuelfing, W. P., Murray, R.W., Acc. Chem. Res. 33, 27; (2000).Google Scholar
5.(a) Leibowitz, F. L., Zheng, W. X., Maye, M. M., Zhong, C. J., Anal. Chem., 71, 5076, (1999).Google Scholar
(b) Han, L., Maye, M. M., Leibowitz, F. L., Ly, N. K., Zhong, C.J., J. Mater. Chem. 11, 1259, (2001)Google Scholar
6. Zheng, W. X., Maye, M. M., Leibowitz, F. L., Zhong, C. J., Anal. Chem., 72, 2190 (2000).Google Scholar
7. Han, L., Daniel, D. R., Maye, M. M., Zhong, C. J., Anal. Chem., 73, 4441, (2001).Google Scholar
8.(a) Maye, M. M., Lou, Y., Zhong, C. J., Langmuir, 16, 7520. (2000).Google Scholar
(b) Lou, Y., Maye, M. M., Han, L., Luo, J., Zhong, C. J., Chem. Comm., 473, (2001)Google Scholar
(d) Luo, J., Lou, Y., Maye, M. M., Zhong, C. J., Hepel, M., Electrochem. Comm., 3, 172. (2001).Google Scholar
9.(a) Jones, V. W., Kenseth, J. R., Porter, M. D., Mosher, C. L., Henderson, E., Anal. Chem., 70, 1233, (1998).Google Scholar
(b) O'Brien, J. C., Stickney, J.T., Porter, M. D., J. Am. Chem. Soc., 122, 5004. (2000)Google Scholar
10. Zhang, F. X., Zheng, W., Maye, M. M., Lou, Y., Han, L., Zhong, C. J.; Langmuir, 16, 9639, (2000)Google Scholar
11. Kumar, A., Biebuyck, H. A., Whitesides, G. M., Langmuir, 10, 1498, (1994)Google Scholar
12.(a) Yan, L., Zhao, X-M., Whitesides, G. M., J. Am. Chem. Soc., 120, 6179, (1998)Google Scholar
(b) Yan, L., Huck, W. T. S., Zhao, X-M., Whitesides, G. M., Langmuir, 15, 1208. (1999)Google Scholar
13. Maye, M. M., Luo, J., Han, L., Zhong, C.J.; Nano Letts., 1, 10, 575, (2001).Google Scholar