Skip to main content Accessibility help

Pattern Formation on Silicon-on-Insulator

  • Frank S. Flack (a1), Bin Yang (a1), Minghuang Huang (a2), Matt Marcus (a1), Jason Simmons (a1), Olivia M. Castellini (a1), Mark A. Eriksson (a1), Feng Liu (a2) and Max G. Lagally (a1)...


The strain driven self-assembly of faceted Ge nanocrystals during epitaxy on Si(001) to form quantum dots (QDs) is by now well known. We have also recently provided an understanding of the thermodynamic driving force for directed assembly of QDs on bulk Si (extendable to other QD systems) based on local chemical potential and curvature of the surface. Silicon-on-insulator (SOI) produces unique new phenomena. The essential thermodynamic instability of the very thin crystalline layer (called the template layer) resting on an oxide can cause this layer, under appropriate conditions, to dewet, agglomerate, and self-organize into an array of Si nanocrystals. Using low-energy electron microscopy (LEEM), we observe this process and, with the help of first-principles total-energy calculations, we provide a quantitative understanding of this pattern formation. The Si nanocrystal pattern formation can be controlled by lithographic patterning of the SOI prior to the dewetting process. The resulting patterns of electrically isolated Si nanocrystals can in turn be used as a template for growth of nanostructures, such as carbon nanotubes (CNTs). Finally we show that this growth may be controlled by the flow dynamics of the feed gas across the substrate.



Hide All
1. Kane, W.M., Spratt, J.P., and Hershinger, L.W., J. Appl. Phys. 37, 20852089 (1966).
2. Scharnhorst, P., Surf. Sci. 15, 380–6 (1969).
3. Hummel, R.E., DeHoff, R.T., Matts-Goho, S., and Goho, W.M., Thin Solid Films 78, 114 (1981).
4. Kwon, J.-Y., Yoon, T.-S., Kim, K.-B., and Min, S.-H., J. Appl. Phys. 93, 3270–8 (2003).
5. Srolovitz, D.J., Yang, W., and Goldiner, M.G. in Polycrystalline Thin Films: Structure, Texture, Properties, and Applications II, edited by Frost, H.J., Parker, M.A., Ross, C.A., and Holm, E.A., (Mater. Res. Soc. Symp. Proc. 403, Pittsburgh, Pa, 1996), pp. 313.
6. Woll, A.R., Moran, P., Rehder, E.M., Yang, B., Kuech, T.F., and Lagally, M.G. in Current Issues in Heteroepitaxial Growth - Stress Relaxation and Self Assembly, edited by Stach, E., Chason, E., Hull, R., and Bader, S., (Mater. Res. Soc. Symp. Proc. 696, Pittsburgh, Pa, 2002), pp. 119–24.
7. Yamamoto, S., Masuda, S., Yasufuku, H., Ueno, N., Harada, Y., Ichinokawa, T., Kato, M., and Sakai, Y., J. Appl. Phys. 82, 29542960 (1997).
8. Ding, Y., Yamamuro, S., Farrell, D., and Majetich, S.A., J. Appl. Phys. 93, 74117413 (2003).
9. Yamagata, K. and Yonehara, T., Appl. Phys. Lett. 61, 2557–9 (1992).
10. Ono, Y., Nagase, M., Tabe, M., and Takahashi, Y., Jpn. J. Appl. Phys, Pt 1 34, 1728–35 (1995).
11. Sugiyama, N., Tezuka, T., and Kurobe, A., J. Cryst. Growth 192, 395401 (1998).
12. Legrand, B., Agache, V., Melin, T., Nys, J.P., Senez, V., and Stievenard, D., J. Appl. Phys. 91, 106–11 (2002).
13. Nuryadi, R., Ishikawa, Y., and Tabe, M., Appl. Surf. Sci. 159–160, 121–6 (2000).
14. Ishikawa, Y., Imai, Y., Ikeda, H., and Tabe, M., Appl. Phys. Lett. 83, 3162–4 (2003).
15. Eaglesham, D.J., White, A.E., Feldman, L.C., Moriya, N., and Jacobson, D.C., Phys. Rev. Lett. 70, 1643–6 (1993).
16. Bermond, J.M., Metois, J.J., Egea, X., and Floret, F., Suf. Sci. 330, 4860 (1995).
17. Brommer, K.D., Needels, M., Larson, B.E., and Joannopoulos, J.D., Phys. Rev. Lett. 68, 1355–8 (1992).
18. Dabrowski, J., Mussig, H.-J., and Wolff, G., Phys. Rev. Lett. 73, 1660–3 (1994).
19. Laracuente, A., Erwin, S.C., and Whitman, L.J., Phys. Rev. Lett. 81, 5177–80 (1998).
20. Yang, B., Zhang, P., Lagally, M.G., Lu, G.-H., Huang, M., and Liu, F., Submitted to Physical Review Letters.
21. Rayleigh, L., Proc. London Math. Soc. 10, 4 (1878).
22. Liu, F., Wu, F., and Lagally, M.G., Chem. Rev. 97, 10451061 (1997).
23. Wu, F. and Lagally, M.G., Phys. Rev. Lett., 75, 2534 (1995).
24. Franklin, N.R. and Dai, H., Adv. Mat. 12, 890894 (2000).
25. Kitajima, T., Liu, B., and Leone, S.R., Appl. Phys. Lett. 80, 497 (2002).
26. Homma, Y., Kobayashi, Y., Ogino, T., and Yamashita, T., Appl. Phys. Lett. 81, 2261 (2002).
27. Jung, Y.J., Homma, Y., Ogino, T., Kobayashi, Y., Takagi, D., Wei, B., Vajtai, R., and Ajayan, P.M., J. Phys. Chem. B 107, 68596864 (2003).
28. At atmospheric pressure, the flow velocity ν of the methane gas is calculated to be 0.33 cm/s (the methane mass flow rate is 400 sccm and the diameter d of the furnace tube is 2 inches). We estimate that the Reynolds number (Re) of methane flow in the furnace tube is smaller than 10 using the formula Re=ρνd/η, where ρ is the density of methane gas (ρ=178g/m3 at 900°C and 1 atm), and η is the gas viscosity (η=1.8×10-5 kg/m-s). Also, the mean free path, λ, of methane molecules is very small compared to the tube diameter during growth (λ=5×10-3 cm for N2 at room temperature and 1 Torr). The Knudsen number is much smaller than 0.01. Thus, the gas flow can be modeled by continuum theory.
29. Hu, Y., Werner, C., and Li, D., J. Fluids Eng. 125, 871879 (2003).

Pattern Formation on Silicon-on-Insulator

  • Frank S. Flack (a1), Bin Yang (a1), Minghuang Huang (a2), Matt Marcus (a1), Jason Simmons (a1), Olivia M. Castellini (a1), Mark A. Eriksson (a1), Feng Liu (a2) and Max G. Lagally (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed