Skip to main content Accessibility help

Pattern Formation in Directional Solidification

  • Mike Greenwood (a1), Mikko Haataja (a1) and Nikolas Provatas (a1)


We simulate directional solidification using the phase field method solved with adaptive mesh refinement. We examine length scale selection for two cases. For small surface tension anisotropy directed at forty five degrees relative to the pulling direction, we observe a transition from a seaweed to dendrite morphology as the thermal gradient is lowered, consistent with recent experimental findings. We show that the morphology of crystal structures can be unambiguously characterized through the local interface velocity distribution. We derive semi-empirically a phase diagram for the transition from seaweed to dendrites as a function of thermal gradient and pulling speed. As surface tension anisotropy is increased and aligned with the pulling direction we observe cellular and dendritic arrays directed in the pulling direction. We characterize wavelength selection and obtain a new universal scaling of the wavelength that differs from previous theories.



Hide All
[1] Akamatsu, S., Faivre, G., and Ihle, T.. Phys. Rev. E, 51:4751, 1995.
[2] Almgren, R.. SIAM J. Appl. Math., 59:2086, 1999.
[3] Bechhoefer, J. and Libchaber, A.. Phys. Rev. B, 35:1393, 1987.
[4] Ben-Jacob, E., Goldenfeld, N., Kotliar, B.G., and Langer, J.S.. Phys. Rev. Lett., 53:2110, 1984.
[5] Coriell, S. R., McFadden, G. B., and Sekerka, R. F.. Annu. Rev. Mater. Sci., 15:119, 1985.
[6] Flesselles, J.-M., Simon, A.J., and Libchaber, A.J.. Adv. in Phys., 40:1, 1991.
[7] Greenwood, M. and Provatas, N.. Preprint, 2004.
[8] Grossmann, B., Elder, K., Grant, M., and Kosterlitz, M.. Phys. Rev. Lett., 71:3323, 1993.
[9] Hunt, J.D. and Jackson, K.A.. Metall. Trans., 236:843, 1966.
[10] Ihle, T. and Muller-Krumbhaar, H.. Phys. Rev. Lett., 70:3083, 1993.
[11] Karma, A.. Phys. Rev. Lett, 87:115701, 2001.
[12] Karma, A. and Rappel, W.-J.. Phys. Rev. E, 53:3017, 1995.
[13] Kessler, D. A. and Levine, H.. Phys. Rev. A., 31:1712, 1985.
[14] Kessler, D. A. and Levine, H.. Phys. Rev. A., 39:3041, 1989.
[15] Kirkaldy, J. S., Liu, L. X., and Kroupa, A.. Acta Metall. Mater., 43:2905, 1995.
[16] Kopczynski, P., Rappel, W.-J., and Karma, A.. Phys. Rev. E, 55:1282, 1997.
[17] Kurz, W. and Ficher, D. J.. Acta Metallurgica, 29:11, 1981.
[18] Liu, L. X. and Kirkaldy, J. S.. Acta Metall. Mater., 43:2891, 1995.
[19] Losert, W., Mesquita, O. N., Figueiredo, J.M.A., and Cummins, H.Z.. Phys. Rev. Lett., 81:409, 1998.
[20] Losert, W., Shi, B.Q., and Cummins, H.Z.. Proc. Natl. Acad. Sci. USA, 95:431, 1998.
[21] Losert, W., Shi, B.Q., and Cummins, H.Z.. Proc. Natl. Acad. Sci. USA, 95:439, 1998.
[22] Mullins, W. W. and Sekerka, R. F.. J. Appl. Phys., 34:323, 1963.
[23] Provatas, N. and Dantzig, J.. The Enyclopedia of Materials Science and Technology. World Scientife, Oxford, 2001.
[24] Provatas, N., Dantzig, J., and Goldenfeld, N.. Phys. Rev. Lett., 80:3308, 1998.
[25] Provatas, N., Dantzig, J., and Goldenfeld, N.. J. Comp. Phys., 148:265, 1999.
[26] Provatas, N., Wang, Q., Haataja, M., and Grant, M.. Phys. Rev. Lett., 91, 2003.
[27] Saito, Y., Misbah, C., and Muller-Krumbhaar, H.. Phys. Rev. Lett., 63:2377, 1989.
[28] Trivedi, R. and Kurz, W.. Acta metall. mater., 42:15, 1994.
[29] Trivedi, R. and Somboonsuk, K.. Materials Science and Engineering, 65:65, 1984.
[30] Provatas, N. (unpublished).
[31] Utter, B., Ragnarsson, R., and Bodenschatz, E.. Phys. Rev. Lett., 86:4604, 2001.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed