Skip to main content Accessibility help

Passive Polymeric Waveguide Materials for Optical Interconnects

  • Lynn D. Hutcheson (a1), John P. Arrington (a2) and Stephen F. Powell (a2)


The need for higher bandwidth interconnect schemes to relieve the communications bottleneck caused by the ever increasing speeds of discreet electronic devices has led to a renewed interest in thin film optical waveguides as interconnect media. This paper reviews some of the polymeric materials that have been investigated for use as thin film passive optical waveguides over the past ten years. Several proposed applications for these waveguides are presented and the specific material requirements of these applications are discussed. The strengths and weaknesses of specific polymeric materials are considered in view of these requirements. While reference is made to a variety of polymers that have been considered for these applications, emphasis is placed on the relative merits of polyimide and acrylate polymer based systems.



Hide All
1. McGoldrick, E., Hubbard, S. D., Maxwell, G., Thomas, N., Passive Optical Silica-on-Silicon Waveguide Components, Proc. SPIE, 1374, 118–25 (1990).
2. Baumbick, R., Potential for Integrated Optical Circuits in Advanced Aircraft with Fiber Optic Control and Monitoring Systems, Proc. SPIE, 1374, 238–50 (1990)
3. Hartman, D. H., Digital High Speed Interconnects: a Study of the Optical Alternative, Opt. Eng., 25, 1086–102 (1986)
4. Hutcheson, L. D., High Speed Optical Interconnect Development, Proc. SPIE, 716, 32–9 (1986).
5. Christensen, D. A., Plasma-etched Polymer Waveguides for Intrachip Optical Interconnects, Proc. SPIE, 836, 359–63 (1987)
6. Weber, H. P., Tomlinson, W. J., and Chandross, E. A., Organic Materials for Integrated Optics, Optics and Quant. Electron., 7. 465–73 (1975).
7. Zyss, J., Nonlinear Organic Materials for Integrated Optics, a Review. J. Mol. Electron., 1, 2545 (1985).
8. Lytel, R., Lipscomb, G. F., Binkley, E. S., Kenney, J. T., and Ticknor, A. J., Electrooptic Polymer Waveguide Devices, in Materials for Nonlinear Optics, edited by Marder, S. R., Sohn, J. E., and Stucky, G. D. (ACS Symposium Series, Washington DC, 1991), Chapter 6.
9. Booth, B. L., Low Loss Channel Waveguides in Polymers, J. Lightwave Technol., 7, 1445–53 (1989).
10. Selvaraj, R., Lin, H. T., and McDonald, J. F., Integrated Optical Waveguides in Polyimide for Wafer Scale Integration, J. Lightwave Technol., 6, 1034–44 (1988).
11. Rooks, M. J., Roussell, H.V., Johnson, L. M., Polyimide Optical Waveguides Fabricated with Electron Beam Lithography, Appl. Opt., 29, 3880–2 (1990).
12. Hewak, D. W. and Jerominek, H., Channel Optical Waveguides in Polyimides for Optical Interconnection by Laser Direct Writing and Contact Printing, Proc. SPIE, 1213, 8699 (1990).
13. Franke, H., Crow, J. D., Optical Waveguiding in Polyimide, Proc. SPIE, 651, 102–7 (1986).
14. Dawar, A. L., Joshi, J. C., Kapoor, S. K., Bishambhu, N. K., Tripathi, K. N., Fabrication and Characterization of Dye Doped Polyester-Polyurethane Optical Waveguides, Appl. Opt., 30, 2553–7 (1991).
15. Dawar, A. L., Joshi, J. C., Kapoor, S. K., Gupta, V. L., Optical Waveguiding Properties of Urethane-Linked Polystyrene and its Copolymers, J. Mat. Sci. Lett., 10, 693–5 (1991).
16. Dawar, A. L., Joshi, J. C., Bishambhu, N. K., Tripathi, K. N., Mansingh, A., Optical-Guiding Properties of Polyurethane Coatings Based on Polyester Polyol, J. Mat. Sci. Lett., 9, 1431–4 (1990).
17. Kapoor, S. K., Pandey, C. D., Joshi, J. C., Dawar, A. L., Tripathy, K. N., and Gupta, V. L., Fabrication and Characterization of Polyester and Acrylic Polyurethane Optical Waveguides, Appl. Opt., 28, 37–9 (1989).
18. Franke, H., Knabke, G., and Reuter, R., Optical Waveguiding in Polyimide If, Proc. SPIE, 682, 191–5 (1986).
19. Reuter, R., Franke, H., and Feger, C., Evaluating Polyimides as Lightguide Materials, Appl. Opt., 27, 4565–71(1988).
20. Sullivan, C. T. and Husain, A., Guided-Wave Optical Interconnects forVLSI Systems, Proc. SPIE, 881, 172–6 (1988).
21. See for example Polyimides edited by K. L. Mittal (Plenum, New York, 1984), Vol.1 & 2.345
22. Russell, T. P., Gugger, H., and Swalen, J. D., In-Plane Orientation of Polyimide, J. Polym. Sci., Polym. Phys. Ed., 21, 1745–56 (1983).
23. Takahashi, N., Yoon, D. Y., and Parrish, W., Molecular Order in Condensed States of Semniflexible Poly(amic acid) and Polyimide, Macromolecules, 17, 2583–8 (1984).
24. Sosnowski, T. P. and Weber, H. P., Thin Birefringent Polymer Films for Integrated Optics, Appl. Phys. Lett., 21, 310–1 (1972).
25. Krchnavek, R. R., Lalk, G. R., Hartman, D. H., Laser Direct Writing of Channel Waveguides Using Spin-On Polymers, J. Appl. Phys., 66, 5156–60 (1989).
26. Beeson, K. W., Horn, K. A., McFarland, M., and Yardley, J. T., Photochemical Laser Writing of Polymeric Optical Waveguides, Appl. Phys. Lett. 58, 1955–7 (1991).
27. Franke, H., Optical Recording of Refractive-Index Patterns in Doped Poly-(Methyl Methacrylate) Filmns, Appl. Opt., 23, 2729–33 (1984).
28. Miura, K., Sawaki, I., and Nakajima, H., Low-Loss Single-Mode Plastic Waveguide Fabricated by Photopolymerization, in Technical Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, DC, 1988), pp. 5861.
29. Glenn, R., Goodwin, M. J., Trundel, C., Solvent-Assisted Indiffusion: a New Method for the Production Of Nonlinear Waveguides In Polymer Matrices, J. Mol. Electron., 3, 5966 (1987).
30. Chandross, E. A., Pryde, C. A., Tomlinson, W. J., and Wever, H. P., Photolocking - A New Technique for Fabrication Optical Waveguide Circuits, Appl. Phys. Lett. 24. 72–4 (1972).
31. Emslie, C., Review - Polymer Optical Fibers, J. Mat. Sci., 23, 2281–93 (1988).
32. Booth, B. L., Marchegiano, J. E., and Hohman, J. L., Polymer Waveguides for Optical Interconnects, in Photonic Networks, Components & Applications, edited by Chrostowski, J. and Terry, J. (World Scientific, Singapore, 1991).
33. Kurokawa, T., Takato, N., and Katayama, Y., Polymer Optical Circuits for Multimode Optical Fiber Systems, Appl. Opt., 19, 3124–9 (1980).
34. Imamura, S., Yoshimura, R., Izawa, T., Polymer Channel Waveguides with Low Loss at 1.3 μm, Electron. Lett., 27, 1342–3 (1991).
35. Ives, J. T. and Reichert, W. M., Polymer Thin Film Integrated Optics: Fabrication and Characterization of Polystyrene Waveguides, J. Appl. Polym. Sci., 36, 429–43 (1988)
36. Mathy, A., Simmrock, H-U, and Bubeck, C., Optical Waveguiding in Thin Films of Polyelectrolytes, J. Phys. D, 24, 1003–8 (1991).
37. Hornak, L. A., Weidman, T. W., and Kwock, E. W., Polyalkylsilyne Photodefined Thin-Filmn Optical Waveguides, J. Appl. Phys., 67, 2235–9 (1990).
38. Burzynski, R., Prasad, P. N., and Karasz, F. E., Large Optical Birefringence in Poly(P-Phenylene Vinylene) Films Measured by Optical Waveguide Techniques, Polymer, 31, 627–30 (1990).
39. Chen, R. T., Wang, M. R., Sonek, G. J., and Jannson, T., Polymer Microstructure Waveguides on Various Substrates for Optical Interconnection and Communication, Proc. SPIE, 1213, 100–10 (1990).
40. Kobayashi, S., Sumida, S., and Miyashita, T., Silica Optical Integrated Devices, Proc. SPIE, 1374, 300–6 (1990).
41. Booth, B. L., Photopolymer Materials for Holography, Appl. Opt., 11, 2994–5 (1972).
42. See for example Schacham, op. cit.. and references therein.
43. Hartman, D. H., Lalk, G. R., Howse, J. W., and Krchnavek, R. R., Radiant Cured Polymer Optical Waveguides on Printed Circuit Boards for Photonic Interconnection Use, Appl. Opt., 28, 40–7 (1989).
44. Yamada, Y., Yamada, M., Terui, H., and Kobayashi, N., Optical Interconnections Using a Silica-Based Waveguide on a Silicon Substrate, Opt. Eng., 28, 1281–7 (1989).
45. Goodman, J. W., Leonberger, F. J., Kung, S. Y., and Athale, R. A., Optical Interconnections for VLSI Systems, Proc. IEEE 72, 850–66 (1984).
46. Fried, J. A., Optical l/O for High Speed Cmos Systems, Opt. Eng., 25, 1132–41 (1986).
47. Haugen, P. R., Rychnovsky, S., Husain, A., and Hutcheson, L. D., Optical Interconnects for High Speed Computing, Opt. Eng. 25, 1076–85 (1986).
48. Schacham, S. E., Merkelo, H., Hwang, L.-T., McCredie, B. D., Veatch, M. S., and Turlik, I., Comparative Evaluation of Optical Waveguides as Alternative Interconnection for High Performance Packaging, IEEE Trans. Components, Hybrids, and Manf. Technol., 15, 6372 (1992).
49. Arrington, J., Moyer, W., Nurse, J., Powell, S., Cook, J., Shephard, F. R., and Westwood, W. D., Stable, Low Loss Optical Waveguides and Microprism Reflectors Fabricated in Acrylate Polymers, Manuscript in preparation.
50. Clair, T. L. St. in Polyimides, edited by Wilson, D., Stenzenberger, H. D., and Hergenrother, P. M. (Chapman & Hall, New York, 1990), pp. 62–7.
51. UCB Radcure Inc., private communication and unserialized technical bulletins.
52. Brendley, W. H. and Bakule, R. D., Chemistry of Acrylic Resins for Coatings, in Applied Polymer Science., 2nd Ed., edited by Tess, R. W. and Poeblin, G. W. (ACS Symposium Series 285, Washington, D.C. 1985) pp. 1037–9.
53. Guha, A., Bristow, J., Sullivan, C., and Husain, A., Optical Interconnections for Massively Parallel Architectures, Appl. Opt., 29, 1077–93 (1990).

Passive Polymeric Waveguide Materials for Optical Interconnects

  • Lynn D. Hutcheson (a1), John P. Arrington (a2) and Stephen F. Powell (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed