Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-22T21:38:41.289Z Has data issue: false hasContentIssue false

Passive Polymeric Waveguide Materials for Optical Interconnects

Published online by Cambridge University Press:  15 February 2011

Lynn D. Hutcheson
Affiliation:
Raynet Corporation, 155 Constitution Drive, Menlo Park, CA 94025
John P. Arrington
Affiliation:
Raychem Corporation, 300 Constitution Drive, Menlo Park, CA 94025
Stephen F. Powell
Affiliation:
Raychem Corporation, 300 Constitution Drive, Menlo Park, CA 94025
Get access

Abstract

The need for higher bandwidth interconnect schemes to relieve the communications bottleneck caused by the ever increasing speeds of discreet electronic devices has led to a renewed interest in thin film optical waveguides as interconnect media. This paper reviews some of the polymeric materials that have been investigated for use as thin film passive optical waveguides over the past ten years. Several proposed applications for these waveguides are presented and the specific material requirements of these applications are discussed. The strengths and weaknesses of specific polymeric materials are considered in view of these requirements. While reference is made to a variety of polymers that have been considered for these applications, emphasis is placed on the relative merits of polyimide and acrylate polymer based systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. McGoldrick, E., Hubbard, S. D., Maxwell, G., Thomas, N., Passive Optical Silica-on-Silicon Waveguide Components, Proc. SPIE, 1374, 118–25 (1990).Google Scholar
2. Baumbick, R., Potential for Integrated Optical Circuits in Advanced Aircraft with Fiber Optic Control and Monitoring Systems, Proc. SPIE, 1374, 238–50 (1990)CrossRefGoogle Scholar
3. Hartman, D. H., Digital High Speed Interconnects: a Study of the Optical Alternative, Opt. Eng., 25, 1086–102 (1986)Google Scholar
4. Hutcheson, L. D., High Speed Optical Interconnect Development, Proc. SPIE, 716, 32–9 (1986).Google Scholar
5. Christensen, D. A., Plasma-etched Polymer Waveguides for Intrachip Optical Interconnects, Proc. SPIE, 836, 359–63 (1987)Google Scholar
6. Weber, H. P., Tomlinson, W. J., and Chandross, E. A., Organic Materials for Integrated Optics, Optics and Quant. Electron., 7. 465–73 (1975).Google Scholar
7. Zyss, J., Nonlinear Organic Materials for Integrated Optics, a Review. J. Mol. Electron., 1, 2545 (1985).Google Scholar
8. Lytel, R., Lipscomb, G. F., Binkley, E. S., Kenney, J. T., and Ticknor, A. J., Electrooptic Polymer Waveguide Devices, in Materials for Nonlinear Optics, edited by Marder, S. R., Sohn, J. E., and Stucky, G. D. (ACS Symposium Series, Washington DC, 1991), Chapter 6.Google Scholar
9. Booth, B. L., Low Loss Channel Waveguides in Polymers, J. Lightwave Technol., 7, 1445–53 (1989).CrossRefGoogle Scholar
10. Selvaraj, R., Lin, H. T., and McDonald, J. F., Integrated Optical Waveguides in Polyimide for Wafer Scale Integration, J. Lightwave Technol., 6, 1034–44 (1988).Google Scholar
11. Rooks, M. J., Roussell, H.V., Johnson, L. M., Polyimide Optical Waveguides Fabricated with Electron Beam Lithography, Appl. Opt., 29, 3880–2 (1990).Google Scholar
12. Hewak, D. W. and Jerominek, H., Channel Optical Waveguides in Polyimides for Optical Interconnection by Laser Direct Writing and Contact Printing, Proc. SPIE, 1213, 8699 (1990).Google Scholar
13. Franke, H., Crow, J. D., Optical Waveguiding in Polyimide, Proc. SPIE, 651, 102–7 (1986).Google Scholar
14. Dawar, A. L., Joshi, J. C., Kapoor, S. K., Bishambhu, N. K., Tripathi, K. N., Fabrication and Characterization of Dye Doped Polyester-Polyurethane Optical Waveguides, Appl. Opt., 30, 2553–7 (1991).Google Scholar
15. Dawar, A. L., Joshi, J. C., Kapoor, S. K., Gupta, V. L., Optical Waveguiding Properties of Urethane-Linked Polystyrene and its Copolymers, J. Mat. Sci. Lett., 10, 693–5 (1991).Google Scholar
16. Dawar, A. L., Joshi, J. C., Bishambhu, N. K., Tripathi, K. N., Mansingh, A., Optical-Guiding Properties of Polyurethane Coatings Based on Polyester Polyol, J. Mat. Sci. Lett., 9, 1431–4 (1990).Google Scholar
17. Kapoor, S. K., Pandey, C. D., Joshi, J. C., Dawar, A. L., Tripathy, K. N., and Gupta, V. L., Fabrication and Characterization of Polyester and Acrylic Polyurethane Optical Waveguides, Appl. Opt., 28, 37–9 (1989).Google Scholar
18. Franke, H., Knabke, G., and Reuter, R., Optical Waveguiding in Polyimide If, Proc. SPIE, 682, 191–5 (1986).Google Scholar
19. Reuter, R., Franke, H., and Feger, C., Evaluating Polyimides as Lightguide Materials, Appl. Opt., 27, 4565–71(1988).Google Scholar
20. Sullivan, C. T. and Husain, A., Guided-Wave Optical Interconnects forVLSI Systems, Proc. SPIE, 881, 172–6 (1988).Google Scholar
21. See for example Polyimides edited by K. L. Mittal (Plenum, New York, 1984), Vol.1 & 2.345Google Scholar
22. Russell, T. P., Gugger, H., and Swalen, J. D., In-Plane Orientation of Polyimide, J. Polym. Sci., Polym. Phys. Ed., 21, 1745–56 (1983).Google Scholar
23. Takahashi, N., Yoon, D. Y., and Parrish, W., Molecular Order in Condensed States of Semniflexible Poly(amic acid) and Polyimide, Macromolecules, 17, 2583–8 (1984).Google Scholar
24. Sosnowski, T. P. and Weber, H. P., Thin Birefringent Polymer Films for Integrated Optics, Appl. Phys. Lett., 21, 310–1 (1972).Google Scholar
25. Krchnavek, R. R., Lalk, G. R., Hartman, D. H., Laser Direct Writing of Channel Waveguides Using Spin-On Polymers, J. Appl. Phys., 66, 5156–60 (1989).Google Scholar
26. Beeson, K. W., Horn, K. A., McFarland, M., and Yardley, J. T., Photochemical Laser Writing of Polymeric Optical Waveguides, Appl. Phys. Lett. 58, 1955–7 (1991).CrossRefGoogle Scholar
27. Franke, H., Optical Recording of Refractive-Index Patterns in Doped Poly-(Methyl Methacrylate) Filmns, Appl. Opt., 23, 2729–33 (1984).Google Scholar
28. Miura, K., Sawaki, I., and Nakajima, H., Low-Loss Single-Mode Plastic Waveguide Fabricated by Photopolymerization, in Technical Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, DC, 1988), pp. 5861.Google Scholar
29. Glenn, R., Goodwin, M. J., Trundel, C., Solvent-Assisted Indiffusion: a New Method for the Production Of Nonlinear Waveguides In Polymer Matrices, J. Mol. Electron., 3, 5966 (1987).Google Scholar
30. Chandross, E. A., Pryde, C. A., Tomlinson, W. J., and Wever, H. P., Photolocking - A New Technique for Fabrication Optical Waveguide Circuits, Appl. Phys. Lett. 24. 72–4 (1972).Google Scholar
31. Emslie, C., Review - Polymer Optical Fibers, J. Mat. Sci., 23, 2281–93 (1988).Google Scholar
32. Booth, B. L., Marchegiano, J. E., and Hohman, J. L., Polymer Waveguides for Optical Interconnects, in Photonic Networks, Components & Applications, edited by Chrostowski, J. and Terry, J. (World Scientific, Singapore, 1991).Google Scholar
33. Kurokawa, T., Takato, N., and Katayama, Y., Polymer Optical Circuits for Multimode Optical Fiber Systems, Appl. Opt., 19, 3124–9 (1980).Google Scholar
34. Imamura, S., Yoshimura, R., Izawa, T., Polymer Channel Waveguides with Low Loss at 1.3 μm, Electron. Lett., 27, 1342–3 (1991).Google Scholar
35. Ives, J. T. and Reichert, W. M., Polymer Thin Film Integrated Optics: Fabrication and Characterization of Polystyrene Waveguides, J. Appl. Polym. Sci., 36, 429–43 (1988)Google Scholar
36. Mathy, A., Simmrock, H-U, and Bubeck, C., Optical Waveguiding in Thin Films of Polyelectrolytes, J. Phys. D, 24, 1003–8 (1991).Google Scholar
37. Hornak, L. A., Weidman, T. W., and Kwock, E. W., Polyalkylsilyne Photodefined Thin-Filmn Optical Waveguides, J. Appl. Phys., 67, 2235–9 (1990).Google Scholar
38. Burzynski, R., Prasad, P. N., and Karasz, F. E., Large Optical Birefringence in Poly(P-Phenylene Vinylene) Films Measured by Optical Waveguide Techniques, Polymer, 31, 627–30 (1990).Google Scholar
39. Chen, R. T., Wang, M. R., Sonek, G. J., and Jannson, T., Polymer Microstructure Waveguides on Various Substrates for Optical Interconnection and Communication, Proc. SPIE, 1213, 100–10 (1990).Google Scholar
40. Kobayashi, S., Sumida, S., and Miyashita, T., Silica Optical Integrated Devices, Proc. SPIE, 1374, 300–6 (1990).Google Scholar
41. Booth, B. L., Photopolymer Materials for Holography, Appl. Opt., 11, 2994–5 (1972).Google Scholar
42. See for example Schacham, op. cit.. and references therein.Google Scholar
43. Hartman, D. H., Lalk, G. R., Howse, J. W., and Krchnavek, R. R., Radiant Cured Polymer Optical Waveguides on Printed Circuit Boards for Photonic Interconnection Use, Appl. Opt., 28, 40–7 (1989).CrossRefGoogle ScholarPubMed
44. Yamada, Y., Yamada, M., Terui, H., and Kobayashi, N., Optical Interconnections Using a Silica-Based Waveguide on a Silicon Substrate, Opt. Eng., 28, 1281–7 (1989).Google Scholar
45. Goodman, J. W., Leonberger, F. J., Kung, S. Y., and Athale, R. A., Optical Interconnections for VLSI Systems, Proc. IEEE 72, 850–66 (1984).Google Scholar
46. Fried, J. A., Optical l/O for High Speed Cmos Systems, Opt. Eng., 25, 1132–41 (1986).Google Scholar
47. Haugen, P. R., Rychnovsky, S., Husain, A., and Hutcheson, L. D., Optical Interconnects for High Speed Computing, Opt. Eng. 25, 1076–85 (1986).Google Scholar
48. Schacham, S. E., Merkelo, H., Hwang, L.-T., McCredie, B. D., Veatch, M. S., and Turlik, I., Comparative Evaluation of Optical Waveguides as Alternative Interconnection for High Performance Packaging, IEEE Trans. Components, Hybrids, and Manf. Technol., 15, 6372 (1992).Google Scholar
49. Arrington, J., Moyer, W., Nurse, J., Powell, S., Cook, J., Shephard, F. R., and Westwood, W. D., Stable, Low Loss Optical Waveguides and Microprism Reflectors Fabricated in Acrylate Polymers, Manuscript in preparation.Google Scholar
50. Clair, T. L. St. in Polyimides, edited by Wilson, D., Stenzenberger, H. D., and Hergenrother, P. M. (Chapman & Hall, New York, 1990), pp. 62–7.Google Scholar
51. UCB Radcure Inc., private communication and unserialized technical bulletins.Google Scholar
52. Brendley, W. H. and Bakule, R. D., Chemistry of Acrylic Resins for Coatings, in Applied Polymer Science., 2nd Ed., edited by Tess, R. W. and Poeblin, G. W. (ACS Symposium Series 285, Washington, D.C. 1985) pp. 1037–9.Google Scholar
53. Guha, A., Bristow, J., Sullivan, C., and Husain, A., Optical Interconnections for Massively Parallel Architectures, Appl. Opt., 29, 1077–93 (1990).Google Scholar