Skip to main content Accessibility help

Passivation of Silicon Surfaces by Treatment in Water at 110°C

  • Tomohiko Nakamura (a1), Toshiyuki Sameshima (a1), Masahiko Hasumi (a1) and Tomohisa Mizuno (a2)


We report effective passivation of silicon surfaces by heating single crystalline silicon substrates in liquid water at 110°C for 1 h. High values of photo-induced effective minority carrier lifetime τeff in the range from 1.9x10-4 to 1.8x10-3 s were obtained for the n-type samples with resistivity in the range from 1.7 to 18.1 Ωcm. τeff ranged from 8.3x10-4 to 3.1x10-3 s and from 1.2x10-4 to 6.0x10-4 s over the area of 4 inch sized 17.0 Ωcm n- and 15.0 Ωcm p-type samples, respectively. The heat treatment in liquid water at 110°C for 1 h resulted in low surface recombination velocities ranging from 7 to 34 cm/s and from 49 to 250 cm/s for those 4 inch sized n- and p-type samples, respectively. The thickness of the passivation layer was estimated to be approximate only 0.7 nm. Metal-insulator-semiconductor type solar cell was demonstrated with Al and Au metal formation on the passivated surface. Rectified current voltage and solar cell characteristics were observed. Open circuit voltage of 0.47 V was obtained under AM 1.5 light illumination at 100 mW/cm2.



Hide All
1. Sze, S. M., Semiconductor Devices (Wiley, New York, 1985) Chap 7.
2. Webster, E. A. G., Grant, L. A., Henderson, R. K., IEEE Trans. Electron Devices 60, 1188 (2013).
3. Bohndiek, S. E., Arvanitis, C. D., Royle, G. J., Clark, A. T., Crooks, J. P., Prydderch, M. L., Turchetta, R., Blue, A., O'Shea, V., and Speller, R. D., Optical Engineering, 46, 124003 (2007).
4. Webster, E. A. G., Grant, L. A., and Henderson, R. K., IEEE Electr. Dev. Lett. 33, 1589 (2012).
5. Green, M. A., Prog. Photovoltaics 17, 183 (2009).
6. Green, M. A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E. D., Prog. Photovoltaics 20, 12 (2011).
7. Zhao, J., Wang, A., Green, M. A., Ferrazza, F., Appl. Physi. Lett. 73, 1991 (1998).
8. Sopori, B. L.: Sol. Energy Mater. Sol. Cells 41–42 (1996) 159.
9. Wu, I.-W., Lewis, A. G., Hung, T.-Y., and Chiang, A.: IEEE Electron Device Lett. 10 (1989) 123.
10. Larionova, Yevgeniya, Mertens, Verena, Harder, Nils-Peter, and Brendel, Rolf, Appl. Phys. Lett. 96, 032105 (2010).
11. Takenezawa, J., Hasumi, M., Sameshima, T., Koida, T., Kaneko, T., Karasawa, M., and Kondo, M., J. of Non-Crystalline Solids 358 (2012) 22852288.
12. Sameshima, T., Satoh, M., Jpn. J. Appl. Phys. 36 (1997) L687.
13. Sameshima, T., Kogure, K. and Hasumi, M., Jpn. J.Appl. Phys. 49 110205 (2010).
14. Sameshima, T., Hayasaka, H., and Haba, T., Jpn. J. Appl. Phys. 48, 021204 (2009).
15. Sameshima, T., Nagao, T., Yoshidomi, S., Kogure, K., and Hasumi, M., Jpn. J. Appl. Phys. 50, 03CA02 (2011).
16. Sameshima, T., Ebina, R., Betsuin, K., Takiguchi, Y., and Hasumi, M., Jpn. J. Appl. Phys. 52, 011801–1 (2013).
17. Groove, A. S.: Physics and Technology of Semiconductor Devices (Wiley, New York, 1967) Chap. 5.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed