Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-03T10:59:51.033Z Has data issue: false hasContentIssue false

A Particular Structure of B-doped μc-Si/a-Si:H Layers on Insulator

Published online by Cambridge University Press:  28 February 2011

M. Le Berre
Affiliation:
LPM-INSA (URA CNRS 358), 20 AV. Einstein, 69621 Villeurbanne, France
M. Lemiti
Affiliation:
LPM-INSA (URA CNRS 358), 20 AV. Einstein, 69621 Villeurbanne, France
P. Pinard
Affiliation:
LPM-INSA (URA CNRS 358), 20 AV. Einstein, 69621 Villeurbanne, France
E. Bustarret
Affiliation:
LEPES-CNRS, 166X, 38042 Grenoble Cedex, France
W. Grieshaber
Affiliation:
LEPES-CNRS, 166X, 38042 Grenoble Cedex, France
J.-C. Bruyère
Affiliation:
LEPES-CNRS, 166X, 38042 Grenoble Cedex, France
M. Brunei
Affiliation:
Laboratoire de Cristallographie du CNRS, 166X, 38042 Grenoble Cedex, France
Get access

Abstract

Microcrystalline films of thicknesses ranging from 0.3 to 1.1 μm have been deposited on oxidized silicon wafers by PECVD in a 50KHz capacitive discharge reactor at 450°C. Two series of films have been elaborated over a wide range of boron concentrations at the same H2:SiH4 ratio of 9:1. Cross section TEM micrographs showed the films to consist of two sublayers of distinct crystalline nature, whose relative thickness depends on the preparation conditions. With a strongly <220> textured microcrystalline structure, the overlayer snowed a columnar morphology, while the amorphous underlayer reached thicknesses of 350nm. Two additional striking features were observed by TEM: - The grains took two symmetrical orientations relative to the preferential [220] growth axis;- The interface between the amorphous and crystalline regions had a sawtooth pattern with a period around 300nm. In contrast to these microstructural results, the B-profile as measured by SIMS was found to be fiat accross the whole thickness. These local measurements are compared to the results of grazing X ray diffraction and Raman measurements. We observe and discuss a discrepancy between the X ray coherence length and the dimensions of the columns as observed by TEM. While optimized conditions lead to a vanishing amorphous sublayer, the more original features described above are tentatively interpreted taking into account the high compressive strains in the layers deposited at low plasma frequencies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vepreck, S., Chimia 34, 489 (1981)Google Scholar
2. Tsai, C. C., Thompson, R., Doland, C., Ponce, F., Anderson, G. B., Wacker, B., MRS Symp. Proc. 118, 49 (1988)Google Scholar
3. Fang, M., Chevrier, J. B., Drevillon, B., J. Non-Crys. Sol. 137&138, 791 (1991)Google Scholar
4. Matsuda, A., J. Non-Crys. Sol. 59&60, 767 (1983)Google Scholar
5. Shimizu, I., J. Non-Crys. Sol. 114, 145 (1989)Google Scholar
6. Shirai, H., Hanna, J., Shimizu, I., Jap. J. Appl. Phys. 30, L679 (1991)Google Scholar
7. Hachieha, M. A., Bruyère, J. C., Bustarret, E., Deneuville, A., Brunei, M., IPAT87 Int Conf Proc (CEP Ltd, Edinburgh UK, 1987), 360 Google Scholar
8. Prasad, K., Kroll, U., Finger, F. et al., presented at the 1991 MRS Spring Meeting 1991, Anaheim, 1991 (unpublished)Google Scholar
9. Makino, T., Nakamura, H., Sol. St. Elec. 24, 49 (1981)Google Scholar
10. Imura, T., Kaya, H., Terauchi, H., Kiyono, H. et al., Jap. J. Appl. Phys. 23, 179 (1984)Google Scholar
11 Collins, R. W., Yang, B.Y., J. Vac. Sci. Techn. B7, 1155 (1989)Google Scholar
12. Richter, H., Ley, L., J. Phys. 43, Cl247 (1982)Google Scholar
13. Vepreck, S., Heintze, M., Bayer, R., Jurcik-Rajman, M., MRS Symp. Proc. 149, 3 (1989)Google Scholar
14. Brunei, M., Analusis 17, 125 (1989)Google Scholar
15. Klug, H. P., Alexander, L. E., X-Ray Diffraction Procedures. (John Wiley & Sons, New-york, 1954)716p.Google Scholar
16. Warren, B. E., X-Rav Diffraction. (Addison-WESLEY Publishing Company, Reading, Mass., 1969) 381p.Google Scholar
17. Vepreck, S., Sarott, F.-A., Riickschloss, M., J. Non - Crys. Sol. 137&138, 733 (1991)Google Scholar
18. Iqbal, Z., Webb, A.P., Veprek, S., Appl. Phys. Lett. 36, 136 (1980)Google Scholar
19. Cheng, G.X., Xia, H., Chen, K.J. et al., Phys. Stat. Sol. (a) 118, K51 (1990)Google Scholar
20. Richter, H., Wang, Z.F., Ley, L., Sol. St. Comm. 39, 625 (1981)Google Scholar
21. Cerdeira, F., Fjeldly, T.A., Cardona, M., Phys. Rev. B8, 4734 (1973)Google Scholar
22. Nakano, N., Marville, L., Reif, R., J. Appl. Phys. 72, 3641 (1992) ; J. Appl. Phys. 72, 1961 (1992)Google Scholar
23. Nagashima, N., Kubota, K., Jap. J. Appl. Phys. 14, 1105 (1975).Google Scholar