Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T23:56:16.573Z Has data issue: false hasContentIssue false

Parallel Bias-Enhanced Sulfur-Assisted Chemical Vapor Deposition of Nanocrystalline Diamond Films

Published online by Cambridge University Press:  10 February 2011

Joel De Jesùs
Affiliation:
University of Puerto Rico, Dept. of Physics, PO Box 23343, San Juan, PR 00931, U.S.A.
Juan A. Gonzàlez
Affiliation:
University of Puerto Rico, Dept. of Physics Applied to Electronics, Humacao, PR, U.S.A.
Oscar O. Ortiz
Affiliation:
Polytechnic University of Puerto Rico, Dept. of Chemical Engineering, San Juan, PR, U.S.A.
Brad R. Weiner
Affiliation:
University of Puerto Rico, Dept. of Chemistry, PO Box 23346, San Juan, PR 00931, U.S.A.
Gerardo Morell
Affiliation:
University of Puerto Rico, Dept. of Physical Sciences, PO Box 23323, San Juan, PR 00931, U.S.A., gmorell@rrpac.upr.clu.edu
Get access

Abstract

The transformations induced by the application of a continuous bias voltage parallel to the growing surface during the sulfur-assisted hot-filament chemical vapor deposition (HFCVD) of nanocrystalline diamond (n-D) films were investigated by Raman spectroscopy (RS), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The films were deposited on molybdenum substrates using CH4, H2 and H2S. Bias voltages in the range of 0 – 800 VDC were applied parallel to the substrate surface continuously during deposition. The study revealed a significant improvement in the films' density and a lowering in the defect density of the nanocrystalline diamond structure for parallel bias (PB) voltages above 400V. These high PB conditions cause the preferential removal of electrons from the gaseous environment, thus leading to the net accumulation of positive species in the volume above the growing film, which enhances the secondary nucleation. The nanoscale carbon nuclei self-assemble into carbon nano-clusters with diameters in the range of tens of nanometers, which contain diamond (sp3-bonded C) in their cores and graphitic (sp2-bonded C) enclosures. Hence, the observed improvement in film density and in atomic arrangement appears to be connected to the enhanced presence of positively charged ionic species, consistent with models which propose that positively charged carbon species are the crucial precursors for CVD diamond film growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jiao, S., Sumant, A.,Kirk, M. A., Gruen, D. M., Krauss, A. R., Auciello, O., J. Appl. Phys. 90, 183 (2001).and references therein.Google Scholar
2. Spencer, E. G., Schmidt, P. H., Roy, D. C. and Salsalone, F. J., Appl. Phys. Lett. 29, 118 (1976).Google Scholar
3. Matsumoto, S., Sato, Y., Kamo, M. and Setaka, N., Jpn. J. Appl. Phys. 21, L183 (1982).Google Scholar
4. Nistor, L. C., Landuyt, J. Van, Ralchenko, V. G., Obraztsova, E. D. and Smolin, A. A., Diamond and Related Materials, 6, 159 (1997).and references therein.Google Scholar
5. Gupta, S., Weiner, B.R., Morell, G., Journal of Materials Research 18, 363 (2003).Google Scholar
6. Gupta, S., Weiner, B. R., Nelson, W. H., Morell, G., Raman, J. Spectr. 34, 192 (2003).Google Scholar
7. Haubner, R. and Sommer, D., Diamond and Related Materials, in press (2003)Google Scholar
8. Patterson, D. E., Chu, C. J., Bai, B. J., Komplin, N. J., Hauge, R. H., and Margrave, J. L., in Applications of Diamond Films and Related Materials, Ed. by Tzeng, Y., Yoshikawa, M., Murakawa, M., Feldman, A., Elsevier Science B.V., Amsterdam, Netherlands, 1991, p. 569.Google Scholar
9. Barber, G. D. and Yarbrough, W. A., J. Am. Ceram. Soc. 80, 1560 (1997).Google Scholar
10. Latto, M.N., Ripley, D. J., May, P.W., Diamond Relat. Mater. 9, 1181 (2000).Google Scholar
11. Farrer, R. G., Solid State Commun. 7, 685 (1969).Google Scholar
12. Koizumi, S., Teraji, T., Kanda, H., Diamond Relat. Mater. 9, 935 (2000).Google Scholar
13. Prawer, S., C. Uzan-Saguy, Braunstein, G., Kalish, R., Appl. Phys. Lett. 63, 2502 (1993).Google Scholar
14. Prins, J. F., Phys. Rev. B 61, 7191 (2000).Google Scholar
15. Gupta, S., Martínez, A., Weiner, B. R., and Morell, G., Applied Physics Letters 81, 283 (2002).Google Scholar
16. Eaton, S. C., Evstefeeva, Y. E., Angus, J. C., Anderson, A. B., Pleskov, Y. V., Russ. J. of Electrochem. 39, 170 (2003).Google Scholar
17. Miyazaki, T., Okushi, H., Diamond Relat. Mater. 10, 449 (2001).Google Scholar
18. Saada, D., Adler, J., Kalish, R., Appl. Phys. Lett. 77, 878 (2000).Google Scholar
19. González, J. A., Figueroa, O. L., Weiner, B.R., Morell, G., J. Mat. Res. 16, 293 (2001).Google Scholar
20. Stonner, B. R., Ma, G. M., Wolter, S. D., Glass, J. T., Phys. Rev. B 45, 11067 (1992).Google Scholar
21. Gupta, S., Weiss, B. L., Weiner, B.R., Morell, G., J. of Applied Physics, 89, 5671 (2001).Google Scholar
22. Song, B. H., Yoon, D. Y., Diamond Relat. Mater. 9, 82 (2000).Google Scholar
23. Morell, G., Canales, E., Weiner, B. R., Diamond Rel. Mat. 8, 166 (1999).Google Scholar
24. Nemanich, R. J., Glass, J. T., Luckovsky, G. and Schröder, R. E., J. Vac. Sci. Technol. 6, 1783 (1988). R.C. Hyer, M. Green, and S.C. Sharma, Phys. Rev. B 49, 14 573 (1994).Google Scholar
25. Nemanich, R.J.,Glass, J.T.,Luckovsky, G.,Schroder, R. E., J Vac Sci Technol A6, 1783 (1988).Google Scholar
26. Frenklach, M., Materials Research Society Symposium Proceedings 339, 255 (1994).Google Scholar