Skip to main content Accessibility help
×
Home

Parallel Bias-Enhanced Sulfur-Assisted Chemical Vapor Deposition of Nanocrystalline Diamond Films

  • Joel De Jesùs (a1), Juan A. Gonzàlez (a2), Oscar O. Ortiz (a3), Brad R. Weiner (a4) and Gerardo Morell (a5)...

Abstract

The transformations induced by the application of a continuous bias voltage parallel to the growing surface during the sulfur-assisted hot-filament chemical vapor deposition (HFCVD) of nanocrystalline diamond (n-D) films were investigated by Raman spectroscopy (RS), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The films were deposited on molybdenum substrates using CH4, H2 and H2S. Bias voltages in the range of 0 – 800 VDC were applied parallel to the substrate surface continuously during deposition. The study revealed a significant improvement in the films' density and a lowering in the defect density of the nanocrystalline diamond structure for parallel bias (PB) voltages above 400V. These high PB conditions cause the preferential removal of electrons from the gaseous environment, thus leading to the net accumulation of positive species in the volume above the growing film, which enhances the secondary nucleation. The nanoscale carbon nuclei self-assemble into carbon nano-clusters with diameters in the range of tens of nanometers, which contain diamond (sp3-bonded C) in their cores and graphitic (sp2-bonded C) enclosures. Hence, the observed improvement in film density and in atomic arrangement appears to be connected to the enhanced presence of positively charged ionic species, consistent with models which propose that positively charged carbon species are the crucial precursors for CVD diamond film growth.

Copyright

References

Hide All
1. Jiao, S., Sumant, A.,Kirk, M. A., Gruen, D. M., Krauss, A. R., Auciello, O., J. Appl. Phys. 90, 183 (2001).and references therein.
2. Spencer, E. G., Schmidt, P. H., Roy, D. C. and Salsalone, F. J., Appl. Phys. Lett. 29, 118 (1976).
3. Matsumoto, S., Sato, Y., Kamo, M. and Setaka, N., Jpn. J. Appl. Phys. 21, L183 (1982).
4. Nistor, L. C., Landuyt, J. Van, Ralchenko, V. G., Obraztsova, E. D. and Smolin, A. A., Diamond and Related Materials, 6, 159 (1997).and references therein.
5. Gupta, S., Weiner, B.R., Morell, G., Journal of Materials Research 18, 363 (2003).
6. Gupta, S., Weiner, B. R., Nelson, W. H., Morell, G., Raman, J. Spectr. 34, 192 (2003).
7. Haubner, R. and Sommer, D., Diamond and Related Materials, in press (2003)
8. Patterson, D. E., Chu, C. J., Bai, B. J., Komplin, N. J., Hauge, R. H., and Margrave, J. L., in Applications of Diamond Films and Related Materials, Ed. by Tzeng, Y., Yoshikawa, M., Murakawa, M., Feldman, A., Elsevier Science B.V., Amsterdam, Netherlands, 1991, p. 569.
9. Barber, G. D. and Yarbrough, W. A., J. Am. Ceram. Soc. 80, 1560 (1997).
10. Latto, M.N., Ripley, D. J., May, P.W., Diamond Relat. Mater. 9, 1181 (2000).
11. Farrer, R. G., Solid State Commun. 7, 685 (1969).
12. Koizumi, S., Teraji, T., Kanda, H., Diamond Relat. Mater. 9, 935 (2000).
13. Prawer, S., C. Uzan-Saguy, Braunstein, G., Kalish, R., Appl. Phys. Lett. 63, 2502 (1993).
14. Prins, J. F., Phys. Rev. B 61, 7191 (2000).
15. Gupta, S., Martínez, A., Weiner, B. R., and Morell, G., Applied Physics Letters 81, 283 (2002).
16. Eaton, S. C., Evstefeeva, Y. E., Angus, J. C., Anderson, A. B., Pleskov, Y. V., Russ. J. of Electrochem. 39, 170 (2003).
17. Miyazaki, T., Okushi, H., Diamond Relat. Mater. 10, 449 (2001).
18. Saada, D., Adler, J., Kalish, R., Appl. Phys. Lett. 77, 878 (2000).
19. González, J. A., Figueroa, O. L., Weiner, B.R., Morell, G., J. Mat. Res. 16, 293 (2001).
20. Stonner, B. R., Ma, G. M., Wolter, S. D., Glass, J. T., Phys. Rev. B 45, 11067 (1992).
21. Gupta, S., Weiss, B. L., Weiner, B.R., Morell, G., J. of Applied Physics, 89, 5671 (2001).
22. Song, B. H., Yoon, D. Y., Diamond Relat. Mater. 9, 82 (2000).
23. Morell, G., Canales, E., Weiner, B. R., Diamond Rel. Mat. 8, 166 (1999).
24. Nemanich, R. J., Glass, J. T., Luckovsky, G. and Schröder, R. E., J. Vac. Sci. Technol. 6, 1783 (1988). R.C. Hyer, M. Green, and S.C. Sharma, Phys. Rev. B 49, 14 573 (1994).
25. Nemanich, R.J.,Glass, J.T.,Luckovsky, G.,Schroder, R. E., J Vac Sci Technol A6, 1783 (1988).
26. Frenklach, M., Materials Research Society Symposium Proceedings 339, 255 (1994).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed