Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T00:18:56.138Z Has data issue: false hasContentIssue false

A PAIR-DIFFUSION MODEL FOR ARSENIC IN SILICON CONSIDERING ARSENIC DEACTTVATION-INDUCEDINTERSTITIAL-SDLICON EMISSION

Published online by Cambridge University Press:  15 February 2011

Masayuki Hiroi
Affiliation:
Microelectronics Research Laboratories, NEC Corporation, 1120, Shimokuzawa, Sagamihara Kanagawa 229–11, JAPAN, hiroi@mel.cl.nec.co.jp
Takeo Ikezawa
Affiliation:
NEC informatie systems, 1120, Shimokuzawa, Sagamihara Kanagawa 229–11, JAPAN
Masami Hane
Affiliation:
Microelectronics Research Laboratories, NEC Corporation, 1120, Shimokuzawa, Sagamihara Kanagawa 229–11, JAPAN, hiroi@mel.cl.nec.co.jp
Hiroshi Matsumoto
Affiliation:
Microelectronics Research Laboratories, NEC Corporation, 1120, Shimokuzawa, Sagamihara Kanagawa 229–11, JAPAN, hiroi@mel.cl.nec.co.jp
Get access

Abstract

An arsenic diffusion model was proposed with the emphasis on a new deactivation process which accounts for excess interstitial silicon generation. Appropriate parameter set for the binding energies of arsenic-point defect pairs were obtained for reproducing various arsenic activation levels and interaction with boron in the case of co-diffusion. Such parameters were extracted from the data of carefully performed secondary ion mass spectroscopy with lowering the primary beam energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Fahey, P.M., Griffin, P.B. and Plummer, J.D., Rev. Mod. Phys., 61, 289, (1989).Google Scholar
[2] Crowder, S.W., Rosseau, P.M., Snyder, J.P., Scott, J.A., Griffin, P.B. and Plummer, J.D., Proc. IEDM- 95, 427 (1995).Google Scholar
[3] Orlowski, M., Subrahmanyan, R. and Huffinan, G., J. Appl. Phys., 71, 164 (1992).Google Scholar
[4] Fahey, P., Barbuscia, G., Moslehi, M. and Dutton, R. W., Appl. Phys. Lett., 46, 784 (1985).Google Scholar
[5] Novell, Paul and Law, Mark E., Proc. NUPAD-VI, 41 (1992).Google Scholar
[6] Vandenbossche, Eric, Jaouen, Hereve and Baccus, Bruno, Proc. IEDM- 95, 81 (1995).Google Scholar
[7] Rosseau, P.M., Griffin, P.B., Kuehne, S.C., Plummer, J.D., Proc. IEDM- 95, 861 (1994).Google Scholar
[8] Tsai, M. Y., Morehead, F.F., Baglin, J.E.E., Michel, A.E., J. Appl. Phys., 51, 3230 (1980).Google Scholar
[9] Richard Fair, B. in impurity doping process in silicon edited by Wang, F.F.Y. (North-Holland, 1981), p. 315442.Google Scholar
[10] Mathiot, Daniel and Scheiblin, Pascal, Electrochem. Soc. Proc. 95–5, 13 (1995).Google Scholar
[11] Clejan, Iuval and Dunham, Scott, Electrochem. Soc. Proc. Vol. 95–5, 21 (1995).Google Scholar
[12] Fair, R.B., Wortman, J.J. and Liu, J., J. Electrochem. Soc, 131, 2387 (1984).Google Scholar
[13] Kanemura, T. and Aoki, N., IEICE Tech. Report, 95–232, 15 (1995).Google Scholar
[14] Bronner, G.B. and Plummer, J.D., J. Appl. Phys., 61, 5286 (1987).Google Scholar
[15] Ghaderi, K. and Hobler, G., J. Electrochem. Soc, 142, 1654 (1995).Google Scholar
[16] Mathiot, D. and Pfister, J.C., J. Appl. Phys., 55, 3518 (1984).Google Scholar
[17] Tan, Y. and Gösele, U., Appl. Phys. A, 37, 1 (1985).Google Scholar
[18] Hoyt, J.L. and Gibbons, J.F., Mat. Res. Soc. Symp. Proc, 52, 15 (1986).Google Scholar
[19] Jüngling, W., Picher, P., Selberherr, S., Guerrero, E., and Pötzl, H., IEEE Trans. Electron Devices, ED- 32, 156 (1985).Google Scholar
[20] Jones, K.S., Prussin, S. and Weber, E.R., Appl. Phys., A45, 1 (1988).Google Scholar
[21] Chao, H.S., Crowder, S.W., Griffin, P.B. and Plummer, J.D., J. Appl. Phys., 79, 2352 (1996).Google Scholar
[22] Ho, C.P., Plummer, J.D., Hansen, S.E., and Dutton, R.W., IEEE trans. Electron Devices, 30, 1438 (1983).Google Scholar