Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-08T21:40:02.563Z Has data issue: false hasContentIssue false

P3HT:PCBM Bulk Heterojunction Solar Cells: Morphological And Electrical Characterization And Performance Optimization

Published online by Cambridge University Press:  01 February 2011

Tom Aernouts
Affiliation:
aernouts@imec.be, IMEC, SOLO, Kapeldreef 75, Leuven, N/A, Belgium
Peter Vanlaeke
Affiliation:
vanlaeke@imec.be, IMEC, SOLO, Kapeldreef 75, Leuven, N/A, Belgium
Ilse Haeldermans
Affiliation:
haeldermans@uhasselt.be, Hasselt University, IMO, Diepenbeek, N/A, Belgium
Jan D'Haen
Affiliation:
dhaen@uhasselt.be, Hasselt University, IMO, Diepenbeek, N/A, Belgium
Paul Heremans
Affiliation:
heremans@imec.be, IMEC, SOLO, Kapeldreef 75, Leuven, N/A, Belgium
Jef Poortmans
Affiliation:
poortman@imec.be, IMEC, SOLO, Kapeldreef 75, Leuven, N/A, Belgium
Jean V. Manca
Affiliation:
manca@uhasselt.be, Hasselt University, IMO, Diepenbeek, N/A, Belgium
Get access

Abstract

The performance of organic solar cells based on the blend of regioregular poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) is strongly influenced by the morphology of the active layer on the nanoscale level. X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM) measurements show that ordering of P3HT plays a key role in optimizing the photovoltaic performance. It is demonstrated that the natural tendency of regioregular P3HT to crystallize is disturbed by the addition of PCBM. The crystallinity of the photo-active blend is typically restored by an annealing procedure resulting in improved device performance, characterized by a spectral broadening of the optical absorption.

The morphological changes upon annealing of the P3HT:PCBM blends are accompanied by electrical changes as shown in charge carrier mobility measurements. Space-charge limited current measurements have been performed in hole-only devices with various P3HT:PCBM blend ratios. The mobility before and after annealing is compared and from temperature dependent measurements the width of the density of states distribution (DOS) is determined. The hole mobility in pristine P3HT remains practically unaffected by the annealing treatment. The as-produced P3HT:PCBM blends on the other hand, with a more disordered P3HT phase, have a much lower hole mobility. Annealing is capable of increasing the P3HT ordering with as a result an orders of magnitude larger hole mobility, approaching the value found in pristine P3HT. The DOS bandwidths are affected similarly. In the as-produced blend films a value of 100 meV is found, larger than in the annealed films, there reaching a value around 70 meV similar as in pristine P3HT. Variation of the processing solvent demonstrated however that an optimized morphology and charge transport situation can also be obtained without an additional annealing step. It is shown that in that case the as-produced active layer has already a favorable crystalline morphology. We argue that the high boiling point of the solvent plays an important role in this by influencing the evaporation speed during deposition of the photo-active blend. Further proof is delivered that indeed slowing down the evaporation speed can beneficially influence the solar cell performance. Power conversion efficiency over 4% has been achieved in this way.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brabec, C. J., Sariciftci, N. S., Hummelen, J. C., Adv. Func. Mat. 11 (2001) 15 Google Scholar
2. Sirringhaus, H., Brown, P. J., Friend, R. H., Nielsen, M. M., Bechgaard, K., Langeveld-Voss, B. M. W., Spiering, A. J. H., Janssen, R. A. J., Meijer, E. W., Herwig, P., Leeuw, D. M. de, Nature 401 (1999) 685 Google Scholar
3. Schilinsky, P., Waldauf, C., Hauch, J., Brabec, C. J., J. Appl. Phys. 95 (2004) 2816 Google Scholar
4. Kim, Y., Cook, S., Tuladhar, S. M., Choulis, S. A., Nelson, J., Durrant, J. R., Bradley, D. D. C., Giles, M., McCulloch, I., Ha, C.-S., Ree, M., Nature Materials 5 (2006) 197 Google Scholar
5. Padinger, F., Rittberger, R. S., Sariciftci, N. S., Adv. Func. Mat. 13 (2003) 85 Google Scholar
6. Vanlaeke, P., Swinnen, A., Haeldermans, I., Vanhoyland, G., Aernouts, T., Cheyns, D., Deibel, C., D'Haen, J., Heremans, P., Poortmans, J., Manca, J. V., Sol. En. Mat. Sol. Cells 90 (2006) 2150 Google Scholar
7. Goh, C., Kline, R. J., McGehee, M. D., Kadnikova, E. N., and Fréchet, J. M. J., Appl. Phys. Lett. 86 (2005) 12110 Google Scholar
8. Mihailetchi, V. D., Xie, H., Boer, B. de, Koster, L. J. A., and Blom, P. W. M., Adv. Funct. Mater. 16 (2006) 699 Google Scholar
9. Novikov, S. V., Dunlap, D. H., Kenkre, V. M., Parris, P. E., and Vannikov, A. V., Phys. Rev. Lett. 81 (1998) 4472 Google Scholar
10. Mozer, A. J., and Sariciftci, N. S., Chem. Phys. Lett. 389 (2004) 438 Google Scholar
11. Tanase, C., Meijer, E. J., Blom, P. W. M., and Leeuw, D. M. de, Phys. Rev. Lett. 91 (2003) 216601 Google Scholar
12. Hauff, E. Von, Parisi, J., Dyakonov, V., Thin Solid Films 511512 (2006) 506 Google Scholar
13. Shaheen, S.E., Brabec, C.J., Sariciftci, N.S., Padinger, F., Fromherz, T. and Hummelen, J.C., Appl. Phys. Lett. 78 (2001) 841 Google Scholar
14. Martens, T., D'Haen, J., Munters, T., Beelen, Z., Goris, L., Manca, J., D'Olieslaeger, M., Vanderzande, D., Schepper, L. De and Andriessen, R., Synth. Met. 138 (2003) 243 Google Scholar
15. Vanlaeke, P., Vanhoyland, G., Aernouts, T., Cheyns, D., Deibel, C., Manca, J. V., Heremans, P., Poortmans, J., Thin Solid Films 511-512 (2006) 358 Google Scholar