Skip to main content Accessibility help
×
Home

Oxygen Diffusivity and Defect Transport in Pure and Yb Doped Nano-crystalline Ceria

  • Laxmikant Saraf (a1), V. Shutthanandan (a1), S. Thevuthasan (a1), C. M. Wang (a1), K. T. Koch (a1), J. A. Andreasen (a1), O. Marina (a1) and Y. Zhang (a1)...

Abstract

Oxygen (18O) diffusivity in sol-gel synthesized nano-crystalline ceria films of average grain size of 3 nm and 7 nm, annealed at 300 °C and 450 °C for one hour respectively is examined by nuclear reaction analysis (NRA). Diffusivity and electrical transport properties measured by a. c. impedance spectroscopy were compared with microcrystalline ceria film of average grain size 38 nm annealed at 900 °C for one hour. Effect of enhanced oxygen diffusion along with reduced ionic transport in nano-crystalline ceria and reduced oxygen diffusion along with enhanced ionic transport in microcrystalline ceria are correlated to long range ordering, grain boundary scattering and defect density. Enhancement in the conductivity with reduction in activation energy from 1 eV to 0.5 eV in the case 4 atom% ytterbium (Yb) doped ceria compared to pure ceria is a result of increased oxygen vacancies taking part in the defect transport.

Copyright

References

Hide All
1. Steele, B. C. H. and Heinzel, A., Nature, 414, 345 (2001).
2. Dresselhaus, M. S. and Thomas, I. L., Nature, 414, 332 (2001).
3. Tuller, H.L., Nowick, A.S., J. Electrochem. Soc., 122, 255 (1975).
4. Chiang, Y. M., Lavik, E. B., Kosacki, I., Tuller, H. L. and Ying, J. Y., Appl. Phys. Lett., 69, 185 (1996).
5. Tuller, H. L., Solid State Ionics, 131, 143 (2000).
6. Millot, F. and Mierry, P. D., J. Phys. Chem. Solids, 46, 797 (1985).
7. Gerblinger, J., Lohwasser, W., Lampe, U. and Meixner, H., Sensors and Actuators B, 26–27, 93 (1995).
8. Katsuki, M., Wang, S., Yasumoto, K. and Dokiya, M., Solid State Ionics, 154–155, 589 (2002)
9. Saraf, L.V., Shutthanandan, V., Wang, C. M., Zhang, Y., Marina, O. and Thevuthasan, S., Conf. Proc. IEEE-Nano 2003 [Third IEEE Conference on Nanotechnology], (2003).
10. Thevuthasan, S., Peden, C.H.F., Engelhard, M.H., Baer, D.R., Herman, G.S., Jiang, W., Liang, Y., and Weber, W.J., Nuclear Instruments and Methods in Physics Research A, 420, 81 (1999).
11. Rodriguez-Viejo, J., Sibieude, F., Clavaguera-Mora, M.T. and Monty, C., Appl. Phys. Lett., 63, 1906 (1993).
12. Huang, K., Schroeder, M. and Goodenough, J. B., Electrochem. Solid State Lett., 2, 375 (1999).
13. Cunningham, R. E. and Williams, R. J. J. in “Diffusion in Gases and Porous Media”, ed. Cunningham, R. E. and Williams, R. J. J. (Plenum Press, New York, 1980) pp. 161.
14. Maier, J., Prog. Solid St. Chem, 23, 171263 (1995).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed