Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T10:25:53.077Z Has data issue: false hasContentIssue false

Oxide Nonlinear Conductors: A Review

Published online by Cambridge University Press:  28 February 2011

Lionel M. Levinson
Affiliation:
GE Research and Development Center, P.O. Box 8, Schenectady, NY 12301
Herbert R. Philipp
Affiliation:
GE Research and Development Center, P.O. Box 8, Schenectady, NY 12301
Get access

Abstract

Oxide nonlinear conductors are granular electronic ceramic materials whose electrical behavior is dominated by grain boundary interfaces states. The material is typically comprised of relatively conducting oxide grains with electrical barriers at the grain boundaries induced by segregated impurity ions. Oxide nonlinear conductors can exhibit a highlynonlinear current-voltage relationship with a 5% change in voltage serving to increase the current flow an order of magnitude or more.

This review outlines our understanding of the microstructure, grain boundary properties and electrical behavior of these variable resistor or “varistor” granular materials. ZnO varistors currently have widespread application in protecting power and signal level electrical circuits against dangerous voltage surges and a brief overview will be given of the applications of this material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Matsuoka, M., Jpn. J. Appl Phys. 10, 736 (1971).Google Scholar
[2] Yamaoka, N., Masuyama, M., and Fulcu, M., Bull. Am. Cer. Soc., 62, 698 (1983).Google Scholar
[3] Yon, M.F. and Rhodes, W.W., Appl. Phys. Lett, 40,536 (1982).Google Scholar
[4] Levinson, L.M. and Philipp, H.R., Am Cer. Soc. Bulletinr 65, (4) 639 (1986).Google Scholar
[5] Levinson, L.M. and Philipp, H.R, “Application and Characterization of ZnO Varistors,” in Ceramic Materials for Electronics, 2nd Ed., Buchanan, R.C., Ed., Marcel Dekker (1990).Google Scholar
[6] Castleberry, D.E., IEEE Trans. Electron Devices, ED–26, R1123 (1978); D.E. Castleberry and Levinson, L.M., 1980 SID Int Syrp., Paper 18.5.Google Scholar
[7] Chiang, A. and Fairbairn, D.G., 1980 SID lnt Syrp., Paper 11.5Google Scholar
[8] Martzloff, F.D. and Hahn, G.D., IEEE Trans. PowerAppar. Syst, PAS–89 (6), 10491056 (July-Aug. 1970).Google Scholar
[9] Philipp, H.R. and Levinson, L.M., in Advances in Ceramics, Vol. 1, p. 309, Grain Boundary Phenomena in Electronic Ceramics, Ed. by Levinson, L.M. (American Ceramic Society, Columbus, OH, 1981)Google Scholar
[10] Philipp, H.R., Mahan, G.D. and Levinson, L.M., Report ORNL/Sub/84-17457/1, Subcontract 86X-17457C, July 1984 for DOE under Contract No. DE-AC05-840R 21400.Google Scholar
[11] Clarke, D.R., J. App. Phys. 48 4372 (1977).Google Scholar
[12] Levinson, L.M. and Philipp, H.R., J. Appl. Phys. 47, 1117 (1976).Google Scholar
[13] Levinson, L.M. and Philipp, H.R., J. Appl. Phys. 46, 1332 (1975).Google Scholar
[14] Morris, W.G., J. Vac. ScL Techno, 13, 926 (1976).Google Scholar
[15] Levine, J.D., Cri. Rev. Solid State Sci, 5, 597 (1975).Google Scholar
[16] Bernasconi, J., Klein, H.P., Knecht, B., and Strassler, S., J. Electron. Mater., 5, 473 (1976).Google Scholar
[17] Levinson, L.M. and Philipp, H.R., J. Appl. Phys. 47, 3116 (1976).Google Scholar
[18] Mahan, G.D., Levinson, L.M., and Philipp, H.R., J. Appl. Phys. 50, 2799 (1980).Google Scholar
[19] Philipp, H.R. and Levinson, L.M., J. Appl. Phys. 50, 383 (1979).Google Scholar
[20] Bernasconi, J., Strassler, S., Knecht, B., Klein, H.P., and Menth, A., Solid State Commun., 21, 867 (1977).Google Scholar
[21] Emtage, P.R., J. Appl. Phys. 48 4372 (1977).Google Scholar
[22] Hower, P.L. and Gupta, T.K., J. Appl. Phys. 50, 4847 (1979).Google Scholar
[23] Pike, G.E., Mater. Res. Soc. Proc., 5, 369 (1982).Google Scholar
[24] Greuter, F., Blatter, G., Rossinelli, M. and Stucki, F., in Ceramic Transactions: Advances in Varistor Technology, Vol. 3, p. 31, ed. by Levinson, L.M. (American Ceramic Society, Columbus, OH, 1989).Google Scholar
[25] Pike, G.E., Kurtz, S.R., Gourley, P.L., Philipp, H.R., and Levinson, L.M., J. Appl. Phys. 57, 5512 (1985).Google Scholar
[26] Tur, P., Rossinelli, M., and Greuter, F., Physica Scripta, 38, 491 (1988).Google Scholar
[27] Electric Power Research Institute Contract RP 2667-2, “Fundamental Research on Metal Oxide Varistor Technology,” (1990), in press.Google Scholar
[28] Aviation Week and Space Technology, May 20, 1985.Google Scholar
[29] Sakshaug, E.C., Kresge, J.S., and Miske, S.A., IEEE Trans. Power Appar. Syst, PAS–96, 647656 (1977).Google Scholar
[30] Application Guide, Tranquell Station Surge Arresters, Report GET-6460, General Electric Co., CPPO, Pittsfield, MA.Google Scholar