Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-12T06:31:49.488Z Has data issue: false hasContentIssue false

Oxidation of Strained Si-Ge Layers Grown by MBE

Published online by Cambridge University Press:  26 February 2011

G.L. Patton
Affiliation:
IBM Research Division T.J. Watson Research Center P.O. Box 218, Yorktown Heights, NY 10598
S.S. Iyer
Affiliation:
IBM Research Division T.J. Watson Research Center P.O. Box 218, Yorktown Heights, NY 10598
S.L. Delage
Affiliation:
IBM Research Division T.J. Watson Research Center P.O. Box 218, Yorktown Heights, NY 10598
E. Ganin
Affiliation:
IBM Research Division T.J. Watson Research Center P.O. Box 218, Yorktown Heights, NY 10598
R.C. Mcintosh
Affiliation:
IBM Research Division T.J. Watson Research Center P.O. Box 218, Yorktown Heights, NY 10598
Get access

Abstract

The oxidation of strained SiGe alloy layers grown by Molecular Beam Epitaxy (MBE) was studied. An initial fast growth regime was identified for 800°C steam oxidations, where the growth rate is 2.5 times that of silicon. The oxides formed on SiGe were found to be essentially Ge-free: Ge present in the material is rejected by the oxide, resulting in the formation of a Ge-rich epitaxial layer at the oxide/substrate interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bean, J.C., Feldman, L.C., Fiory, A.T., Nakahara, S., and Robinson, I.K., J. Vac. Sci. Technol., A2, 436 (1984).Google Scholar
2.People, R., Bean, J.C., Lang, D.V., Sergent, A.M., Stormer, H.L., Wecht, K.W., Lynch, R.T., and Baldwin, K., Appl. Phys. Lett., 45, 1231 (1984).Google Scholar
3.Luryi, S., Kastalsky, A., and Bean, J.C., IEEE Trans. Electron Devices, ED-31, 1135 (1984).Google Scholar
4.Daembkes, H., Herzog, H.-J., Jorke, H., Kibbel, H., and Kasper, E., IEEE Trans. Electron Devices, ED-33, 633 (1986).Google Scholar
5.Pearsall, T.P. and Bean, J.C., IEEE Electron Device Lett., EDL-7, 308 (1986).Google Scholar
6.lyer, S.S., Patton, G.L., Delage, S.L., Tiwari, S., and Stork, J.M.C., in 1987 IEDM Tech. Dig.Google Scholar
7.Margalit, S., Bar-Lev, A., Kuper, A.B., Aharoni, H., and Neugroschel, A., J. Crystal Growth, 17, 288 (1972).Google Scholar
8.Neugroschel, A., Margalit, S., and Bar-Lev, A., J. Phys. D: Appl. Phys., 6, 1606 (1973).Google Scholar
9.Holland, O.W., White, C.W., and Fathy, D., Appl. Phys. Lett., 51, 520 (1987).Google Scholar
10.Fathy, D., Holland, O.W., and White, C.W., Appl. Phys. Lett., 51, 1337 (1987).Google Scholar
11.Patton, G.L., lyer, S.S., Delage, S.L., and McIntosh, R.M., presented at the 8th Molecular Beam Epitaxy Workshop, Los Angeles, CA, 1987 (unpublished).Google Scholar
12.Segmuller, A., in Mat. Res. Soc. Symp. Proc., 77, 151 (1987).Google Scholar
13.Spitzer, S.M. and Schwartz, S., IEEE Trans. Electron Devices, ED-16, 348 (1969).Google Scholar
14.Ainslie, N.G., d'Heurle, F.M., and Wells, O.C., Appl. Phys. Lett., 20, 173 (1972).Google Scholar
15.Le Goues, F.K., lyer, S.S., Tu, K.N. and Delage, S.L., this Proceedings.Google Scholar