Skip to main content Accessibility help
×
Home

Overview of Various Strategies and Promising New Bulk Materials for Potential Thermoelectric Applications

  • Terry M. Tritt (a1)

Abstract

Recently, there has been a renewed interest in thermoelectric material research. There are a number of different systems of potential thermoelectric (TE) materials that are under investigation by various research groups. Some of these research efforts focus on minimizing lattice thermal conductivity while other efforts focus on materials that exhibit large power factors. An overview of some of the requirements and strategies for the investigation and optimization of a new system of materials for potential thermoelectric applications will be discussed. Some of the newer concepts such as low-dimensional systems and Slack's phononglass, electron-crystal concept will be discussed. Current strategies for minimizing lattice thermal conductivity and also minimum requirements for thermopower will be presented. The emphasis of this paper will be to identify some of the more recent promising bulk materials and discuss the challenges and issues related to each. This paper is targeted more at “newcomers” to the field and does not discuss some of the very interesting results that are being reported in the thin film and superlattice materials. Some of the bulk materials which will be discussed include complex chalcogenides (e.g.CsBi4Te6 and pentatellurides such as the Zr1−XHfXTe5 system), half-Heusler alloys (e.g. TiNiSn1−XSbX), ceramic oxides (NaCo4O2), skutterudites (e.g. YbXCo4−XSb12 or EuXCo4−XSb12) and clathrates (e.g. Sr8Ga16Ge30). Each of these systems is distinctly different yet each exhibits some prospect as a potential thermoelectric material. Results will be presented and discussed on each system of materials.

Copyright

References

Hide All
1“Recent Trends in Thermoelectric Materials Research”, Semiconductors and Semimetals, Volumes 69, 70 and 71, Volumes edited by Tritt, Terry M., Treatise, editors, Willardson, R. K. and Weber, E., Academic Press, New York, (2000)
2. Proceedings of the 1997 Materials Research Society Volume 478, Warrendale, PA, Thermoelectric Materials -New Directions and Approaches Edited by: Tritt, Terry M. et al. .
3. Proceedings of 1998 Materials Research Society Volume 545 and 626, Warrendale, PA, New Materials for Small Scale Thermoelectric Refrigeration and Power Generation Applications, Edited by: Tritt, Terry M. et al. .
4 Nolas, G. S., Sharp, J. and Goldsmid, H. J., Thermoelectrics: Basic Principles and New Materials Developments, Springer New York (2000)
5. Singh, D., these proceedings
6. Ioffe, A. F., Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch London 1957
7 Tritt, Terry M., Science, 272, 1276 (1996) and Science, 283, 804 (1999)
8 DiSalvo, F. J., Science, 285, 70 (1999)
9 Slack, G. A., in Solid State Physics, 34, 1 (1979), ed. by F. Seitz, D. Turnbull, and H. Ehrenreich, Academic Press, New York.
10. Slack, G. A., New Materials and Performance Limits for Thermoelectric Cooling, p 407, CRC Handbook on Thermoelectrics, edited by Rowe, D. M., CRC Press Boca Raton FL (1995)
11. Bhattacharya, S. et al. . these proceedings
12. Savvides, N. and Goldsmid, H.J., J. Physics. C: Solid St. Phys., 13,(1980) p. 46574670.
13. Rowe, D.M. and Shukla, V. S., J. Appl. Phys. 52 (12), p. 74217426.
14. Bhandari, C.M. and Rowe, D.M., J. Phys. D: Appl. Phys., 16 (1983) p. L75–L77.
15. Goldsmid, H.J., Penn, A.W., Phys. Lett, 27A (1968), p. 523524.
16 Mahan, G., J. Appl. Phys. 65,1578 (1989)
17 Mahan, G., Good Thermoelectrics, in Solid State Physics, 51, 81 (1998), ed. by F. Seitz, D. Turnbull, and H. Ehrenreich, Academic Press, New York.
18 Sales, B. C., Mandrus, D., and Williams, R. K., Science 272, 1325 (1996).
19 Nolas, G.S., Slack, G.A., Morelli, D.T., Tritt, T.M. and Ehrlich, A.C., J. Appl. Phys. 79, 4002 (1996).
20 Nolas, G. S., Cohn, J. S., Slack, G. A., and Schuman, S. B., Appl. Phys. Lett, 73, 178 (1998)
21 Min, Gao and Rowe, D. M., Appl. Phys Lett., 77, 860 (2000)
22 Goldsmid, H. J., Electronic Refrigeration, Pion Limited Publishing, London, (1986).
23 Sloan, J., Superconductor Industry, Fall 1996, p32, (1996)
24 Allen, Andrew W., Detector Handbook, Laser Focus World, March issue 1997
25 Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B. 47, 12727 (1993).
26 Chung, Duck Young et al. , Science, 287, 1024 (2000)
27 Yim, W. M. and Rosi, F. D., Solid-State Electronics, 15, 1121–40, (1972)
28 Zawilski, B.M., Littleton, R.T. IV and Terry T. Tritt Appl. Phys. Lett,
29 Terasaki, I., Sasago, Y. and Uchinokura, K. Phys. Rev. B, 56, R82685 (1997)
30 Kawata, T., Iguci, Y., Itoh, T., Takahata, K. and Terasaki, I., Phys. Rev. B, 60, 10584 (1999)
31 Takahata, K., Iguci, Y., Tanaka, D., Itoh, T., and Terasaki, I. Phys. Rev. B, 61, 12551 (2000)
32 Poon, S. J., Electronic and Thermoelectric Properties of Half-Heusler Alloys, in Vol. 70 (see ref. 1 above), edited by Tritt, Terry M., Chapter 2, pp 3776. (and references therein)
33 Aliev, F. G. et al. , Z.Phys. B 75 167. (1989)
34 Aliev, F. G. et al. , Z. Phys. B 80 353 (1990)
35 Ogut, S. and Rabe, K. M., Phys. Rev. B 51 10443. (1995)
36 Uher, C. et al. , Phys. Rev. B 59, No.13 (1999) pp.86158621
37 Hohl, H., et al. , J.Phys.:Condens, Matter Vol.11 No. 7, pp.12761277(1999).
38 Browning, V. M. et al. , 1998 MRS Symposium Proceedings, Vol. 545, p 403, (see ref. 3 above)
39 Uher, C. et al. , 1998 MRS Symposium Proceedings., Vol. 545, p 247, (see ref. 3 above)
40 Mastronardi, K. et al. , Appl. Phys. Lett, 74, 1415 (1999)
41 Shen, Q., Chen, L., Goto, T., Hirai, T., Yang, J., Meissner, G. P. and Uher, C., Appl. Phys. Lett, 79, 4165, 2002
42. Sharp, J.W., Poon, S.J. and Goldsmid, H.J., Physica Status Solidi (a), 187, 507 (2001).
43 Tritt, Terry M. et al. Invited Plenary talk at ICT-2000 p.516, Babrow Press, edited by Rowe, D. M. (August 2000)
44 Nolas, G.S., Morelli, D.T. and Tritt, T.M., Annu. Rev. Mater. Sci. 29, 89 (1999), and references therein.
45 Uher, C., Skutterudites: Prospective Novel Thermoelectrics, in Vol. 69 see reference (1) above edited by Terry M. Tritt, Volume 69, Chapter 5, pp 139-254.
46 Nolas, G.S. et al. , J. Appl. Phys. 79, 4002 (1998)
47 Evers, C.B.H., Jeitschko, W., Boonk, L., Braun, D.J., Ebel, T. and Scholz, U.D., J. Alloys Comp. 224, 184 (1995), and references therein..
48 Chakoumakos, B.C., Sales, B.C., Mandrus, D. and Keppens, V., Acta. Cryst. B55, 341, (1999), and references therein.
49 Sales, Brian. C., Mandrus, David G., Chakoumakos, Brian. C.Use of Atomic Displacement Parameters in Thermoelectric Materials Research” in Volume 70 (see ref. 1 above), edited by Tritt, T.M. (Academic Press, San Diego, 2000) Chapter 1, pp. 136,
50 Nolas, G.S., Cohn, J.L. and Slack, G.A., Phys Rev B 58, 164 (1998).
51 Nolas, G. S., Kaeser, M., Littleton, R.T. IV, and Tritt, T. M., Appl. Phys. Lett., 77, 1855 (2000)
52 Dilley, N. R., Bauer, E. D, Maple, M. B. and Sales, B. C., Jour. Appl. Phys., 88, 1948, (2000) and references therein on the Yb based skutterudites.
53 Lamberton, G. A. Jr., Bhattacharya, S., Littleton, R. T. IV, Kaeser, M. A., Tedstrom, R. H., Tritt, T. M., Yang, J. and Nolas, G. S., Appl. Phys. Lett., 80, 598 (2002)
54 Nolas, G.S., Slack, G.A. and Schujman, S.B., “Semiconducting Clathrates: A Phonon Glass Electron Crystal Material with Potential for Thermoelectric Applications” in Volume 69, see reference (1) above edited by Tritt, Terry M., (Academic Press, San Diego, 2000) Chapter 6, pp 255-300 and references therein.
55 Nolas, George S. and Slack, Glen A., American Scientist, 89, 136 (2001)
56. Kasper, J.S., Hagenmuller, P., Pouchard, M. and Cros, C., Science 150, 1713 (1965).
57. Cros, C., Pouchard, M. and Hagenmuller, P., J. Solid State Chem. 2, 5470 (1970).
58. Jeffrey, G. A. in Inclusion Compounds; Eds. Atwood, J. L, Davies, J. E. D., and MacNicol, D. D., Academic Press, 1984; Vol. 1, pp 135190.
59. See for example Yamanaka, S., Enishi, E., Fukluoka, H. and Yasukawa, M., Phys. Rev. Inorg. Chem. 39, 56 (2000).and references therein
60. Bryan, J.D., Srdanov, V. I., Stucky, G. and Schmidt, D., Phys. Rev. B 60, 3064 (1999).
61. Adams, G.B, O'Keeffe, M., Demkov, A.A., Sankey, O.F. and Huang, Y.-M., Physical Review B 49, 8048 (1994).
62. Nolas, G. S., Cohn, J. L., Slack, G. A. and Schujman, S. B., Appl. Phys. Lett. 73, 178 (1998).
63. Keppens, V., Sales, B.C., Mandrus, D., Chakoumakos, B.C. and Laermans, C., Phil. Mag. Lett. 80, 807 (2000).
64. Cohn, J.L., Nolas, G.S., Fessatidis, V., Metcalf, T.H. and Slack, G.A., Phys. Rev. Lett. 82, 779 (1999).
65. Nolas, G.S., Weakley, T.J.R. and Cohn, J. L., Chem. Mater. 11, 2470 (1999).
66. Kawaji, H., Horie, H., Yamanaka, S. and Ishikawa, M., Phys. Rev. Lett. 74, 1427 (1995).
67. Yamanaka, S., Enishi, E., Fukluoka, H. and Yasukawa, M., Phys. Rev. Inorg. Chem. 39, 56 (2000).
68. Blake, N.P., Mollnitz, L., Kresse, G. and Metiu, H., J. Chem. Phys. 111, 333 (1999).
69. Cohn, J.L., Nolas, G.S., Fessatidis, V., Metcalf, T.H. and Slack, G.A., Phys. Rev. Lett. 82, 779 (1999).
70 Nolas, G.S., Weakley, T.J.R. and Cohn, J. L., Chem. Mater. 11, 2470 (1999).
71. Sales, B.C., Chakoumakos, B.C., Jin, R., Thompson, J.R. and Mandrus, D., Phys. Rev. B 63, 245113 (2001).
72. Dong, J. and Sankey, O. F., J. Phys. Condens. Matter. 11, 6129 (1999).
73. Nolas, G.S. and Kendziora, C.A., Phys. Rev. B 62, 7157 (2000).
74. Dong, J., Sankey, O.F. and Myles, C.W., Phys. Rev. Lett. 86, 2361 (2001).

Overview of Various Strategies and Promising New Bulk Materials for Potential Thermoelectric Applications

  • Terry M. Tritt (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed