Skip to main content Accessibility help
×
Home

Orthorhombic Martensite, Intermetallic Precipitates and Retained Austenite in Ti-Rich Ti(Ni+Cu) Sputtered thin Films

  • L. Chang (a1) and D. S. Grummon (a1)

Abstract

Periodic multilayered titanium-rich Ni-Ti thin films were prepared by magnetron sputtering from alternating Ni45Ti50Cu5 alloy and pure titanium targets, with an alloy-layerfl'i-layer thickness ratio of 9:1. The microstructure, martensite transformation behavior, and precipitate and defect structures were studied in films which had been annealed at 923K for one hour and furnace cooled at <20 K/min. Energy dispersive X-ray fluorescence measurements showed that the resulting films had a hyperstoichiometric titanium content of approximately 51 atomic percent. Ti2Ni precipitates were found in the annealed structures which were oriented with [1 1 0 ]Ti2Ni parallel to [110]B2 and (001)Ti2Ni parallel within +/− 10 to (001)B2. Differential scanning calorimetry (DSC) revealed an unusually low transformation enthalpy for the martensite reaction in the film (9.1 J/g as opposed to 20.7 J/g for the alloy sputtering target), and a significant fraction of residual B2 austenite was found at temperatures well below the nominal Mf. The martensite transformation was found to occur in two steps involving, on cooling, the initial formation of an orthorhombic martensite prior to transformation to the monoclinic martensite phase at low temperature.

Copyright

References

Hide All
1. Otsuka, K. and Shimizu, K., Int. Met. Rev. 31, p. 93 (1986).
2. Goldstein, D., Naval Surface Warfare Center Report NSWC TR 89-110 (April 1989).
3. Walles, B., Chang, L. and Grunmon, D. S., Mat. Res. Soc. Proc. Symp. M (Dec. 1991).
4. Walker, J. A. and Gabriel, J.. Proc. 5th Int. Conf. on Solid State Sensors and Actuators (ext. abstr. B8), June 1989, Montreaux, Switzerland, p. 123 (1989).
5. Minemura, T., Andoh, H., Nagai, M., Watanabe, R., Shimizu, S. and Ikuta, I., J. Mat. Sci. L. 6, p1267 (1987).
6. Busch, J. D., Johnson, A.D. Hodgson, D.E., Lee, C.H. Stevenson, D.A., ICOMAT 1989.
7. Busch, J. D. and Johnson, A.D, J. Appl. Phys. 68 (12), p.6224 (1990).
8. Johnson, A. D., J. Micromech. Microeng. 1. p. 34 (1991).
9. Busch, J. D., Berkson, M.H., Johnson, A.D., Proc. MRS Symp B, Anaheim, CA.(1991).
10. Kuribayashi, K., Int. J. Robotics Res. 4, p. 47 (1986).
11. Grumnon, D. S., Nam, S. and Chang, L., Mat. Res. Soc. Proc. Symp M (Dec. 1991).
12. Bricknell, R. H., Melton, K. N. and Mercier, O., Met. Trans. 10A, p. 693 (1979).
13. Bricknell, R. H. and Melton, K. N., Met. Trans. 11A. p. 1541 (1980).
14. Wu, S. K. and Wayman, C. M., Mat. Sci. Engr. 96, p. 295 (1987).
15. Tsuji, K. and Nomura, K., Scripta Met. 24, p. 2037 (1990).
16. Tadaki, T. and Wayman, C. M., Metallography 15, p. 247 (1982).
17. Chang, L. and Grummon, D. S., Scripta Met. 25, pp. 20792084 (1991).
18. Chang, L., Hu-Simpson, C., Grusumon, D. S., Pratt, W. and Loloee, R., MRS Proc. 187, p. 137 (1990).
19. Neviu, M. V., Trans. AIME 218, p. 327 (1960).
20. Miyazaki, S., Otsuka, K. and Wayman, C. M., Acta Metall 37, p. 1873 (1989).
21. Nishida, M., Wayman, C. M. and Horna, T., Met. Trans. 17A, p. 1505 (1986).
22. Gupta, S. P., Johnson, K. A. A. and Mukherjee, K., Mat. Sci. Engr. 11, p. 283 (1973).
23. Koskimaki, D., Marcinkowski, M. J. and Sastri, A. S., Trans AIME 245, p1883 (1969).

Orthorhombic Martensite, Intermetallic Precipitates and Retained Austenite in Ti-Rich Ti(Ni+Cu) Sputtered thin Films

  • L. Chang (a1) and D. S. Grummon (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed