Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T15:38:10.051Z Has data issue: false hasContentIssue false

Origin of Hysteresis in Carbon Nanotube Field-Effect Transistors

Published online by Cambridge University Press:  31 March 2014

Yael Pascal-Levi
Affiliation:
Department of Electrical Engineering, Technion, Haifa, Israel, 32000 Russell Berrie Nanotechnology Institute, Technion, Haifa, Israel, 32000
Evgeny Shifman
Affiliation:
Department of Electrical Engineering, Technion, Haifa, Israel, 32000
Manish Pal-Chowdhury
Affiliation:
Department of Electrical Engineering, Technion, Haifa, Israel, 32000
Itshak Kalifa
Affiliation:
Department of Electrical Engineering, Technion, Haifa, Israel, 32000
Ida Sivan
Affiliation:
Department of Electrical Engineering, Technion, Haifa, Israel, 32000
Tsvika Rabkin
Affiliation:
Department of Electrical Engineering, Technion, Haifa, Israel, 32000 Russell Berrie Nanotechnology Institute, Technion, Haifa, Israel, 32000
Yuval E. Yaish
Affiliation:
Department of Electrical Engineering, Technion, Haifa, Israel, 32000
Get access

Abstract

Carbon nanotube field effect transistors (CNT FETs) have many possible applications in future nano-electronics due to their excellent electrical properties. However, one of the major challenges regarding their performance is the noticeable gate hysteresis which is often displayed in their transfer characteristics. The hysteresis phenomenon is often attributed to water-mediated charge transfer between the CNT and the dielectric layer or the CNT and the water layer itself. In this study, we implement three different experimental techniques and provide evidence that the hysteresis phenomenon of suspended CNT FETs, as well as of on-surface CNT FETs which operate at low gate voltage regimes (| Vg | < 3V), is based on gate-induced, water-assisted redistribution of mobile charge on the SiO2 surface, and it is not related to charge injection from the CNT itself. Two techniques are based on the current measurements through the CNT and the third utilizes electrostatic force microscopy (EFM) setup. In addition, the applied external gate voltage affect the relaxation time of the current. This change arises from the modification of the amount of water layers which adsorb onto the dielectric surface, which caused by dielectrophoresis attraction between the water molecules and the substrate. It is found that the relaxation time, and hence the surface conductivity, are very sensitive for the first few layers, and saturates above three monolayers of water molecules.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Vanheusden, K., Warren, W. L., Devine, R. A. B., Fleetwood, D. M., Schwank, J. R., Shaneyfelt, M. R., Winokur, P. S., and Lemnios, Z. J., Nature 386, 587 (1997).CrossRefGoogle Scholar
Freitag, M., Johnson, A. T., Kalinin, S. V., and Bonnell, D. A., Phys. Rev. Lett. 89, 216801 (2002).CrossRefGoogle Scholar
Park, J. Y., Appl. Phys. Lett. 90, 023112 (2007).CrossRefGoogle Scholar
Kim, Y., Oh, Y. M., Park, J. Y., and Kahng, S. J., Nanotechnology 18, 475712 (2007).CrossRefGoogle Scholar
Rinkio, M., Johansson, A., Zavodchikova, M. Y., Toppari, J. J., Nasibulin, A. G., Kauppinen, E. I., and Torma, P., New J Phys 10 (2008).CrossRefGoogle Scholar
Lin, H. and Tiwari, S., Appl. Phys. Lett. 89 (2006).Google Scholar
Fuhrer, M. S., Kim, B. M., Durkop, T., and Brintlinger, T., Nano Lett. 2, 755 (2002).CrossRefGoogle Scholar
Radosavljevic, M., Freitag, M., Thadani, K. V., and Johnson, A. T., Nano Lett. 2, 761 (2002).CrossRefGoogle Scholar
Vijayaraghavan, A., Kar, S., Soldano, C., Talapatra, S., Nalamasu, O., and Ajayan, P. M., Appl. Phys. Lett. 89 (2006).CrossRefGoogle Scholar
Estrada, D., Dutta, S., Liao, A., and Pop, E., Nanotechnology 21, 085702 (2010).CrossRefGoogle Scholar
Robert-Peillard, A. and Rotkin, S. V., Ieee T Nanotechnol 4, 284 (2005).CrossRefGoogle Scholar
Kim, W., Javey, A., Vermesh, O., Wang, O., Li, Y. M., and Dai, H. J., Nano Lett. 3, 193 (2003).CrossRefGoogle Scholar
Na, P. S. et al. ., Appl. Phys. Lett. 87, 093101 (2005).CrossRefGoogle Scholar
Pati, R., Zhang, Y., Nayak, S. K., and Ajayan, P. M., Appl. Phys. Lett. 81, 2638 (2002).CrossRefGoogle Scholar
Kar, S., Vijayaraghavan, A., Soldano, C., Talapatra, S., Vajtai, R., Nalamasu, O., and Ajayan, P. M., Appl. Phys. Lett. 89 (2006).CrossRefGoogle Scholar
Bradley, K., Cumings, J., Star, A., Gabriel, J. C. P., and Gruner, G., Nano Lett. 3, 639 (2003).CrossRefGoogle Scholar
Cao, J., Wang, Q., Rolandi, M., and Dai, H. J., Phys. Rev. Lett. 93, 216803 (2004).CrossRefGoogle Scholar
Cao, H., Wang, Q., Wang, D. W., and Dai, H. J., Small 1, 138 (2005).CrossRefGoogle Scholar
Pascal-Levy, Y., Shifman, E., Pal-Chowdhury, M., Kalifa, I., Rabkin, T., Shtempluck, O., Razin, A., Kochetkov, V., and Yaish, Y. E., Phys. Rev. B 86 (2012).CrossRefGoogle Scholar
Rinkio, M., Zavodchikova, M. Y., Torma, P., and Johansson, A., Phys Status Solidi B 245, 2315 (2008).CrossRefGoogle Scholar
Derycke, V., Martel, R., Appenzeller, J., and Avouris, P., Nano Lett. 1, 453 (2001).CrossRefGoogle Scholar
Minot, E. D., Yaish, Y., Sazonova, V., Park, J.-Y., Brink, M., and McEuen, P. L., Phys. Rev. Lett. 90, 156401 (2003).CrossRefGoogle Scholar
Cao, J., Wang, Q., and Dai, H. J., Phys. Rev. Lett. 90 (2003).CrossRefGoogle Scholar
Pop, E., Mann, D., Cao, J., Wang, Q., Goodson, K., and Dai, H. J., Phys. Rev. Lett. 95 (2005).CrossRefGoogle Scholar
Pascal-Levy, Y., Shifman, E., Sivan, I., Kalifa, I., Pal-Chowdhury, M., Shtempluck, O., Razin, A., Kochetkov, V., and Yaish, Y. E., J. Appl. Phys. 112 (2012).CrossRefGoogle Scholar
Pascal-Levy, Y., Shifman, E., Pal-Chowdhury, M., Hajaj, E. M., Shtempluck, O., Razin, A., Kochetkov, V., and Yaish, Y. E., Chemphyschem 13, 4202 (2012).CrossRefGoogle Scholar