Skip to main content Accessibility help
×
Home

Origin of Hysteresis in Carbon Nanotube Field-Effect Transistors

  • Yael Pascal-Levi (a1) (a2), Evgeny Shifman (a1), Manish Pal-Chowdhury (a1), Itshak Kalifa (a1), Ida Sivan (a1), Tsvika Rabkin (a1) (a2) and Yuval E. Yaish (a1)...

Abstract

Carbon nanotube field effect transistors (CNT FETs) have many possible applications in future nano-electronics due to their excellent electrical properties. However, one of the major challenges regarding their performance is the noticeable gate hysteresis which is often displayed in their transfer characteristics. The hysteresis phenomenon is often attributed to water-mediated charge transfer between the CNT and the dielectric layer or the CNT and the water layer itself. In this study, we implement three different experimental techniques and provide evidence that the hysteresis phenomenon of suspended CNT FETs, as well as of on-surface CNT FETs which operate at low gate voltage regimes (| Vg | < 3V), is based on gate-induced, water-assisted redistribution of mobile charge on the SiO2 surface, and it is not related to charge injection from the CNT itself. Two techniques are based on the current measurements through the CNT and the third utilizes electrostatic force microscopy (EFM) setup. In addition, the applied external gate voltage affect the relaxation time of the current. This change arises from the modification of the amount of water layers which adsorb onto the dielectric surface, which caused by dielectrophoresis attraction between the water molecules and the substrate. It is found that the relaxation time, and hence the surface conductivity, are very sensitive for the first few layers, and saturates above three monolayers of water molecules.

Copyright

References

Hide All
1 Vanheusden, K., Warren, W. L., Devine, R. A. B., Fleetwood, D. M., Schwank, J. R., Shaneyfelt, M. R., Winokur, P. S., and Lemnios, Z. J., Nature 386, 587 (1997).
2 Freitag, M., Johnson, A. T., Kalinin, S. V., and Bonnell, D. A., Phys. Rev. Lett. 89, 216801 (2002).
3 Park, J. Y., Appl. Phys. Lett. 90, 023112 (2007).
4 Kim, Y., Oh, Y. M., Park, J. Y., and Kahng, S. J., Nanotechnology 18, 475712 (2007).
5 Rinkio, M., Johansson, A., Zavodchikova, M. Y., Toppari, J. J., Nasibulin, A. G., Kauppinen, E. I., and Torma, P., New J Phys 10 (2008).
6 Lin, H. and Tiwari, S., Appl. Phys. Lett. 89 (2006).
7 Fuhrer, M. S., Kim, B. M., Durkop, T., and Brintlinger, T., Nano Lett. 2, 755 (2002).
8 Radosavljevic, M., Freitag, M., Thadani, K. V., and Johnson, A. T., Nano Lett. 2, 761 (2002).
9 Vijayaraghavan, A., Kar, S., Soldano, C., Talapatra, S., Nalamasu, O., and Ajayan, P. M., Appl. Phys. Lett. 89 (2006).
10 Estrada, D., Dutta, S., Liao, A., and Pop, E., Nanotechnology 21, 085702 (2010).
11 Robert-Peillard, A. and Rotkin, S. V., Ieee T Nanotechnol 4, 284 (2005).
12 Kim, W., Javey, A., Vermesh, O., Wang, O., Li, Y. M., and Dai, H. J., Nano Lett. 3, 193 (2003).
13 Na, P. S. et al. ., Appl. Phys. Lett. 87, 093101 (2005).
14 Pati, R., Zhang, Y., Nayak, S. K., and Ajayan, P. M., Appl. Phys. Lett. 81, 2638 (2002).
15 Kar, S., Vijayaraghavan, A., Soldano, C., Talapatra, S., Vajtai, R., Nalamasu, O., and Ajayan, P. M., Appl. Phys. Lett. 89 (2006).
16 Bradley, K., Cumings, J., Star, A., Gabriel, J. C. P., and Gruner, G., Nano Lett. 3, 639 (2003).
17 Cao, J., Wang, Q., Rolandi, M., and Dai, H. J., Phys. Rev. Lett. 93, 216803 (2004).
18 Cao, H., Wang, Q., Wang, D. W., and Dai, H. J., Small 1, 138 (2005).
19 Pascal-Levy, Y., Shifman, E., Pal-Chowdhury, M., Kalifa, I., Rabkin, T., Shtempluck, O., Razin, A., Kochetkov, V., and Yaish, Y. E., Phys. Rev. B 86 (2012).
20 Rinkio, M., Zavodchikova, M. Y., Torma, P., and Johansson, A., Phys Status Solidi B 245, 2315 (2008).
21 Derycke, V., Martel, R., Appenzeller, J., and Avouris, P., Nano Lett. 1, 453 (2001).
22 Minot, E. D., Yaish, Y., Sazonova, V., Park, J.-Y., Brink, M., and McEuen, P. L., Phys. Rev. Lett. 90, 156401 (2003).
23 Cao, J., Wang, Q., and Dai, H. J., Phys. Rev. Lett. 90 (2003).
24 Pop, E., Mann, D., Cao, J., Wang, Q., Goodson, K., and Dai, H. J., Phys. Rev. Lett. 95 (2005).
25 Pascal-Levy, Y., Shifman, E., Sivan, I., Kalifa, I., Pal-Chowdhury, M., Shtempluck, O., Razin, A., Kochetkov, V., and Yaish, Y. E., J. Appl. Phys. 112 (2012).
26 Pascal-Levy, Y., Shifman, E., Pal-Chowdhury, M., Hajaj, E. M., Shtempluck, O., Razin, A., Kochetkov, V., and Yaish, Y. E., Chemphyschem 13, 4202 (2012).

Keywords

Related content

Powered by UNSILO

Origin of Hysteresis in Carbon Nanotube Field-Effect Transistors

  • Yael Pascal-Levi (a1) (a2), Evgeny Shifman (a1), Manish Pal-Chowdhury (a1), Itshak Kalifa (a1), Ida Sivan (a1), Tsvika Rabkin (a1) (a2) and Yuval E. Yaish (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.