Skip to main content Accessibility help
×
Home

Origin of Grain Boundary Recombination Activity in Silicon Wafers

  • H. Amanrich (a1), S. Martinuzzi (a1) and M. Pasquinelli (a1)

Abstract

In silicon bicrystals grain boundaries (GBs) become recombining after they have been annealed in argon at temperatures higher than 800°C for tens of hours. In order to verify the eventual influence of metallic elements, interstitials gold atoms are introduced in the bicrystals by diffusion (T ≤ 8000 C) from gold dots deposited far from the GB (gold could be segregated by the GB but cannot give deep levels in the grains). It is found by DLTS, EBIC contrast and LBIC scan map that the recombination strength of GBs is not changed by gold in diffusion in as grown bicrystals, while it is reduced in annealed samples. Similar results are obtained with GBs of polycrystalline wafers.

It is concluded that the activation of GBs in CZ silicon bicrystals is certainly due to the segregation of a slow diffuser like oxygen, and that fast diffusers play a secondary role only.

Copyright

References

Hide All
1 Pollock, G.A., Deline, V.R. and Furman, B.K. in Grain Boundaries in Semiconductors ed. by Leamy, H.J., Pike, G.E. and Seager, C.H., (Mater. Res. Soc. Proc. 5 Pittsburgh, PA 1982) pp 7176.
2 Kazmerski, L.L. Proc. of 5th E.C. Photovoltaic Solar Energy Conf. (D. Reidel Pub. Comp. 1983), p 40.
3 Battistella, F., Rocher, A. and George, A. in Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon ed. by Mikkelsen, J.C. Jr, Pearton, S.J., Corbett, J.W. and Pennycook, S.J., (Mater. Res. Soc. Proc. 59, Pittsburgh, PA 1986) pp 347351.
4 Stützler, F.J. and Queisser, H.J., J. Appl. Phys. 60 3910 (1986).
5 Pizzini, S., Cagnoni, P., Sandrinelli, A., Anderle, M. and Canteri, R., Appl. Phys. Lett. 51 676 (1987).
6 Kazmerski, L.L. in Polysilicon Films and Interfaces ed. by Wong, C.Y., Thompson, C.V. and Tu, K.N., (Mater. Res. Soc. Proc. 106, Pittsburgh, PA 1988) pp 199211.
7 Aucouturier, M., Broniatowski, A., Chari, A. and Maurice, J.L. in Polycrystalline Semiconductors ed. par Werner, J.H., Moller, H.S. et Strunk, H.P. (Springer Verlag Berlin 35, 1989), p 64.10.1007/978-3-642-93413-1_9
8 Broniatowski, A., Phys. Rev. Lett. 62 3074 (1989).
9 Spencer, M., Stall, R., Eastman, L.F. and Wood, C.E.C., J. Appl. Phys. 50 8006 (1979).10.1063/1.325985
10 Cheng, L.J. and Shyu, C.M. in Semiconductor Silicon 1981, ed. par Huff, H.R., Kriegler, R.J. et Takeishi, Y. (The Electrochem. Soc. Inc., Pennington 1981), p 390.
11 Martinuzzi, S. in Polycrystalline Semiconductors ed. par Werner, J.H., Moller, H.S. et Strunk, H.P. (Springer Verlag Berlin 35, 1989) p 148.
12 Schmalz, K., Kirscht, F.G., Klose, H., Richter, H. and Helmrich, K. Tittelbach, Phys. Stat. Sol. (a) 100, 567 (1987).10.1002/pssa.2211000223
13 Oates, A.S. and Newman, R.C., Appl. Phys. Lett. 49 262 (1986).
14 Bergholz, W., Hutchinson, J.C. and Pirouz, P., J. Appl. Phys. 58 3419 (1985).10.1063/1.335760
15 Laczik, Z., Booker, G.R. and Bergholz, W., Appl. Phys. Lett. 55 2625 (1989).

Origin of Grain Boundary Recombination Activity in Silicon Wafers

  • H. Amanrich (a1), S. Martinuzzi (a1) and M. Pasquinelli (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed