Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-19T03:05:09.611Z Has data issue: false hasContentIssue false

Orientational Growth of Carbon Nanotube by Thermal CVD

Published online by Cambridge University Press:  15 March 2011

Shen Zhu
Affiliation:
USRA, NASA/Marshall Space Flight Center, Huntsville, AL 35812, USA
Ching-Hua Su
Affiliation:
Microgravity Science and Applications Department, Science Directorate, SD47, NASA/Marshall Space Flight Center, Huntsville, AL 35812, USA
J. C. Cochrane
Affiliation:
USRA, NASA/Marshall Space Flight Center, Huntsville, AL 35812, USA
S. Gorti
Affiliation:
Microgravity Science and Applications Department, Science Directorate, SD47, NASA/Marshall Space Flight Center, Huntsville, AL 35812, USA
S. Lehoczky
Affiliation:
Microgravity Science and Applications Department, Science Directorate, SD47, NASA/Marshall Space Flight Center, Huntsville, AL 35812, USA
Y. Cui
Affiliation:
Center for Photonic Materials, Fisk University, Nashville, TN 37208, USA
A. Burger
Affiliation:
Center for Photonic Materials, Fisk University, Nashville, TN 37208, USA
Get access

Abstract

Carbon nanotubes are synthesized using thermal chemical vapor deposition. Various temperature and pressure are used to fabricate carbon nanotubes. It is found that the nanotube-diameter distribution mainly depends on the growth-temperature. With the substrate surface normal either along or against the gravity vector, different growth orientations of multi-walled carbon nanotubes are observed by scanning electron microscopy although the Raman spectra are similar for samples synthesized at different locations. The sizes of these carbon nanotubes in each sample are quite uniform and the length of the tube is up to hundreds of micrometers. These results suggest the gravitation effects in the growth of long and small diameter CNT.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Terrones, M., Grobert, N., Olivares, J., Zhang, J. P., Terrones, H., Kordatos, K., Msu, W. K., Jare, K.. Townsend, P. D., Prassides, K., Cheetham, A. K., Kroto, H. W., and Walton, D. R. M., Nature 388, 52 (1997).Google Scholar
2. Choi, Y. C., Shin, Y. M., Lee, Y. H., Lee, B. S., Park, G-S, Choi, W. B., Lee, N. S., and Kim, J. M., Appl. Phys. Lett 76, 2367 (2000).Google Scholar
3. Tsai, S. H., Chiang, F. K., Tsai, T. G., Shiew, F. S., and Shih, H. C., Thin solid Films 366, 11 (2000).Google Scholar
4. Li, W. Z., Xie, S. S., Qian, L. X., Chang, B. H., Zou, B. S., Zhou, W. Y., Zhao, R. A., and Wang, G., Science 274, 1701 (1996).Google Scholar
5. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., and Provencio, P. N., Science 282, 1105 (1998).Google Scholar
6. Hong, W. K., Shih, H.C., Tsai, S. H., Shu, C. T., Tarntair, F. G., and Cheng, H. C., Jpn. J. Appl. Phys. Vol. 39, L925 (2000).Google Scholar
7. Murakami, H., Hirakawa, M., Tanaka, C., and Yamakawa, H., Appl. Phys. Lett 74, 644 (1999)Google Scholar
8. Kong, J., Cassell, A. M., and Dai, H., Chem. Phys. Lett. 292, 567 (1998).Google Scholar
9. Choi, Y. C., Shin, Y. M., Lee, Y. H., Lee, B. S., Park, G-S, Choi, W. B., Lee, N. S., and Kim, J. M., Appl. Phys. Lett 76, 2367 (2000).Google Scholar
10. Wan, J., Luo, Y. H., Sung Choi, D., Li, R. G., Jin, G., Liu, J. L., and Wang, K. L., J. Appl. Phys. 89, 1973 (2001)Google Scholar
11. Jantoljak, H., Salvetat, J.-P., Forro, L. and Thomsen, C., Appl. Phys. A: Mater. Sci. Process. 67, 113 (1998).Google Scholar
12. Li, W., Zhang, H., Wang, C., Zhang, Y., Xu, L., Zhu, K., and Xie, S., Appl. Phys. Lett. 70, 2684 (1997).Google Scholar
13. Rao, A. M., Jorio, A., Pimenta, M. A., Dantas, M. S. S., Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. Lett. 84, 1820 (2000).Google Scholar
14. Bandow, S., Asaka, S., Saito, Y., Rao, A. M., Grigorian, L., Richter, E. and Eklund, P. C., Phys. Rev. Lett. 80, 3779 (1998).Google Scholar