Skip to main content Accessibility help
×
Home

Organically Hybridized SnO2 Sensors for Selective Detection of Gas Molecules

  • Ichiro Matsubara (a1), Kouta Hosono (a1), Norimitsu Murayama (a1), Woosuck Shin (a1) and Noriya Izu (a1)...

Abstract

Gas sensors based on organically hybridized SnO2 films are demonstrated. Upon exposure to CO gas, the electrical resistance of the hybrid sensor with amino groups in the organic components increases (R-increasing response), whereas other reducing gases such as H2 and CH4 gases cause the decreasing in the sensor resistance. For the n-type semiconductors like SnO2, the R-increasing response cannot be explained by the ordinary combustion mechanism. The appearance of the anomalous R-increasing response to CO gas can be controlled by the functional groups of the organic component. The hybrid sensor with hydroxy groups also exhibits the R-increasing response to CO gas, whereas it is not observed for the sensor with alkyl groups. The hybridization can improve gas selectivity of the SnO2 semiconducting gas sensors.

Copyright

References

Hide All
1. Ihokura, K. and Watson, J., The Stannic Oxide Gas Sensor-Principles and Applications (CRC Press, Boca Raton, FL, 1994).
2. Shimizu, Y. and Egashira, M., MRS Bulletin, 24, No. 9, 14 (1999).10.1557/S0883769400052465
3. Schubert, U., Husing, N., and Lorenz, A., Chem. Mater., 7, 2010 (1995).10.1021/cm00059a007
4. Sanchez, C. and Ribot, F., New J. Chem., 18, 1007 (1994).
5. Ogawa, M. and Kuroda, K., Chem. Rev., 95, 399 (1995).10.1021/cr00034a005
6. Harreld, J. H., Dunn, B., and Nazar, L. F., Inter. J. Inorg. Mater., 1, 135 (1999).10.1016/S1466-6049(99)00022-7
7. Guizard, C., Bac, A., Barboiu, M., and Hovnanian, N., Sep. Purif. Methods, 25, 167 (2001).10.1016/S1383-5866(01)00101-0
8. Walcarius, A., Chem. Mater., 13, 3351 (2001).10.1021/cm0110167
9. Kagan, C. R., Mitzi, D. B., and Dimitrakopoulos, C. D., Science, 286, 945 (1999).10.1126/science.286.5441.945
10. Sheeney-Haj-Ichia, L., Wasserman, J., and Willner, I., Adv. Mater., 14, 1323 (2002).10.1002/1521-4095(20020916)14:18<1323::AID-ADMA1323>3.0.CO;2-D
11. Tsuru, K., Hayakawa, S., Ohtsuki, C., and Osaka, A., J. Sol-Gel Sci. Tech., 13, 237 (1998).10.1023/A:1008621304371
12. Infrared Structural Correlation Tables and Data Cards, R. G. Miller, H. Willis, Eds. (Heyden, London, 1969).
13. Fadeev, A. Y., Helmy, R., Marcinko, S., Langmuir, 18, 7521 (2002).10.1021/la020178u
14. Culler, S. R., Ishida, H., Koenig, J. K., Appl. Spectrosc., 1, 38 (1984).
15. Williams, G., Coles, G. S. V., MRS Bull., 24, (6), 25 (1999).10.1557/S0883769400052477
16. Pilkenton, S., Xu, W., Raftery, D., Anal. Sci. 17, 125 (2001).10.2116/analsci.17.125
17. Bogillo, V. I., Gun'ko, V. M., Langmuir, 12, 115 (1996).10.1021/la941023s
18. Alexeev, O. S., Graham, G. W., Kim, D. W., Shelef, M., Gates, B. C., Phys. Chem. Chem. Phys., 1, 5725 (1999).10.1039/a907022b

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed