Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T06:24:23.937Z Has data issue: false hasContentIssue false

Organic Polymers with Tunable Charge Carrier Mobilities

Published online by Cambridge University Press:  15 February 2011

Milan Stolka
Affiliation:
Xerox Corporation, 800 Phillips Rd., 01 14-39D, Webster, N.Y. 14580
Martin A. Abkowitz
Affiliation:
Xerox Corporation, 800 Phillips Rd., 01 14-39D, Webster, N.Y. 14580
Get access

Abstract

Charge carrier (hole) mobility in amorphous organic polymeric materiats can be changed at will over at least nine orders of magnitude without increasing the conductivity of the polymers, and also without affecting the carrier range, i.e., without introducing deep traps. The changes in the drift mobility can be accomplished by several means: (1) by changing the density of hopping sites (the concentration of transport-active molecules or groups), (2) by light doping the host polymer with low-oxidation potential compounds (for hole transport), and, eventually, (3) by the nature of the host medium and its polarity. Since the carrier mobility is typically activated and electric field dependent, significant changes can also be made by varying the temperature and the electric field. An enhancement of mobility by heavy doping has also been described. Hole mobilities in the small molecule - host polymer composites and also in polymers in which the transport states are backbone-derived can thus be varied from values below the measurement threshold (<10−10 cm2 V s−1) to fairly high values in the neighborhood of 10−1 cm2 V−1 s−1 at an electric field of E = 105 V cm−1 and at 295 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abkowitz, M. A. and Stolka, M., see the adjacent article.Google Scholar
2. Abkowitz, M. A. and Pai, D. M., Philos. Mag. B 53, 193 (1986).Google Scholar
3. Abkowitz, M. A. and Stolka, M., in “Polymers for Advanced Technologies, Lewin, M. ed., VCH Publ., N.Y. 1988, p. 225.Google Scholar
4. Yuh, H. J. and Stolka, M., Philos. Mag. B 58, 539 (1988).CrossRefGoogle Scholar
5. Abkowitz, M. A., and Stolka, M., Philos. Mag. 58, 239 (1988).Google Scholar
6. Mack, J. X., Schein, L. B., and Peled, A., Phys. Rev. B 39, 7500 (1989).Google Scholar
7 Stolka, M., Yanus, J. F., and Pai, D. M., J. Phys. Chem, 88, 4707 (1984).CrossRefGoogle Scholar
8. Abkowitz, M. A., Rice, M. J. and Stolka, M., Philos. Mag. B 61, 25 (1990).Google Scholar
9. Abkowitz, M. A., Stolka, M., Weagley, R. J., McGrane, K. and Knier, F.E., Syn. Metals 28, C553 (1989).Google Scholar
10. Yuh, H.-J., Abramsohn, D. and Stolka, M., Philos. Mag. Lett. 55, 277 (1987).CrossRefGoogle Scholar
11. Schmidlin, F., Phys. Rev. B 16, 2362 (1977).Google Scholar
12. Pai, D. M., Yanus, J.F., and Stolka, M., J. Phys. Chem., 88, 4714 (1984).CrossRefGoogle Scholar
13. Pfister, G., Grammatica, S. and Mort, J., Phys. Rev. Lett. 37,1360 (1976).CrossRefGoogle Scholar
14. Kuder, J. M., Limburg, W. W., Stolka, M. and Turner, S. R., J. Org. Chem. 44, 761 (1979).CrossRefGoogle Scholar
15. Yuh, H.-J. and Pai, D. M., Mol. Cryst. Liq. Cryst. 183, 217 (1990).Google Scholar
16. Aratani, S., Saito, T., Kawanishi, T., Kinjo, N., Jap. J. Appl. Phys. 29, 1682 (1990).CrossRefGoogle Scholar
17 Kanemitsu, Y., and Einami, J., Appl. Phys Lett., 57, 673 (1990).Google Scholar
18 Vannikov, A. V., Kryukov, A. Yu., Tyurin, A. G. and Zhuravleva, T. S., Phys. Stat. Solidi (a) 115, K47 (1989).Google Scholar
19. Yokoyama, K., Notsu, S., Yokoyama, M., J. Chem. Soc., Chem. Commun. (1990), 805.Google Scholar