Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-19T02:29:57.011Z Has data issue: false hasContentIssue false

Organic Molecules in an Electrical Circuit: An Afm Study of a Negative-Differential-Resistance Molecule

Published online by Cambridge University Press:  01 February 2011

Ganesh K. Ramachandran
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe AZ 85287 e-mail- krg@asu.edu
Adam M. Rawlett
Affiliation:
Physical Sciences Research Laboratories, Motorola Labs, 7700 S. River Pkwy, Tempe AZ 85284
Theresa J. Hopson
Affiliation:
Physical Sciences Research Laboratories, Motorola Labs, 7700 S. River Pkwy, Tempe AZ 85284
Larry A. Nagahara
Affiliation:
Physical Sciences Research Laboratories, Motorola Labs, 7700 S. River Pkwy, Tempe AZ 85284
Raymond K. Tsui
Affiliation:
Physical Sciences Research Laboratories, Motorola Labs, 7700 S. River Pkwy, Tempe AZ 85284
Stuart M. Lindsay
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe AZ 85287
Get access

Abstract

2,5-di(phenylethynyl)-4‘-4“-dithiolate-1-nitrobenzene has been shown to exhibit negative differential resistance (NDR) and spontaneous switching when inserted into inert molecular monolayers between metal contacts. We have used conducting atomic force microscopy to measure the electronic properties of individual dithiolated molecules 2,5-di(phenylethynyl)-4“ 4‘“dithiolate-1-nitrobenzene and 2,5-di(phenylethynyl)-4“4‘“thioacetyl-benzene inserted into an alkanethiol monolayer and chemically bonded to gold nano-contacts to form a covalentlyconnected molecular circuit (bonded contacts). The data show qualitative agreement with previously published results for similar molecules deposited in a nanopore containing several hundred molecules, allowing us to make the important conclusion that the measured negative differential resistance (NDR) is native to the molecule and not an intermolecular phenomenon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Molecular Electronics: Science and Technology, edited by Aviram, A. and Ratner, M. A. (New York Academy of Sciences, New York, 1998).Google Scholar
2. Ellenbogen, J. C. and Love, J. C., Proc. IEEE 88, 386 (2000).Google Scholar
3. Collier, C. P., Wong, E. W., Belohradsky, M., Raymo, F. M., Stoddart, J. F., Kuekes, P. J., Williams, R. S., and Heath, J. R., Science 285, 391 (1999).Google Scholar
4. Schön, J. H., Meng, H., and Bao, Z., Nature 413, 713 (2001).Google Scholar
5. Cui, X. D., Primak, A., Zarate, X., Tomfohr, J., Sankey, O. F., Moore, A. L., Moore, A. L., Gust, D., Harris, G., and Lindsay, S. M., Science 294, 571 (2001).Google Scholar
6. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P., and Tour, J. M., Science 278, 252 (1997).Google Scholar
7. Chen, J., Wang, W., Reed, M. A., Rawlett, A. M., Price, D. W., and Tour, J. M., Appl. Phys. Lett. 77, 1224 (2000).Google Scholar
8. Donhauser, Z. J., Mantooth, B. A., Kelly, K. F., Bumm, L. A., Monnell, J. D., Stapleton, J. J., Price, D. W., Rawlett, A. M., Allara, D. L., Tour, J. M., and Weiss, P. S, Science 292, 2303 (2001).Google Scholar
9. Bumm, L. A., Arnold, J. J., Cygan, M. T., Dunbar, T. D., Burgin, T. P., Jones, L. II, Allara, D. L., Tour, J. M., and Weiss, P. S., Science 271, 1705 (1996).Google Scholar
10. Weare, W. W., Reed, S. M., Warner, M. G., and Hutchinson, J. E.. J. Amer. Chem. Soc. 122, 12890 (2000). M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, J. Chem. Soc. Chem. Commun. 23, 801 (1994).Google Scholar
11. Poirier, G. E., Chem. Rev. 97, 1117 (1997).Google Scholar
12. Cui, X. D., Zarate, X., Tomfohr, J., Sankey, O. F., Primak, A., Moore, A. L., Moore, T. A., Gust, D., Harris, G., and Lindsay, S. M., Nanotechnology 13, 5 (2002).Google Scholar