Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T06:29:37.600Z Has data issue: false hasContentIssue false

Orders of Magnitude Reduction in Threading Dislocations in ZnO Grown on Facet-Controlled GaN

Published online by Cambridge University Press:  01 February 2011

Soo Jin Chua
Affiliation:
elecsj@nus.edu.sg, Singapore-MIT Alliance, NUS, E4-04-10, 4 Engineering Drive 3,, Singapore 117576, Singapore, 117576, Singapore, (65) 65164784, (65) 6779 7454
Hai Long Zhou
Affiliation:
g0301203@nus.edu.sg, National University of Singapore, Department of Physics, 2 Science Drive 3,, Singapore, Singapore, 117542, Singapore
Hui PAN
Affiliation:
g0202361@nus.edu.sg, National University of Singapore, Department of Physics, 2 Science Drive 3,, Singapore, Singapore, 117542, Singapore
Thomas Osipowicz
Affiliation:
phyto@nus.edu.sg, National University of Singapore, Department of Physics, 2 Science Drive 3,, Singapore, Singapore, 117542, Singapore
Get access

Abstract

ZnO is grown by chemical vapour deposition on {1 1 -2 2} GaN planes formed by epitaxial layer overgrowth. Window stripes in a SiO2 mask are oriented in the <1 -1 0 0> direction of the GaN film. Triangular GaN ridge are formed during ELO growth by metal organic chemical vapour deposition. A flat (0 0 0 1) ZnO plane is grown on each triangular cross-section ridge and it is found that the ZnO film has dislocation density reduced by two orders of magnitude compared to that of the GaN substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cho, S., Kim, Y., Sun, Y., George, K.L. Appl. Phys. Lett. 1999, 75, 2761.Google Scholar
2 Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P., Science. 2001, 292, 1897.Google Scholar
3 Minegishi, K., Koiwai, Y., Kikuchi, Y., Yano, K., Kasuga, S., Shimizu, A. Jpn. J. Appl. Phys. 1997,36, L1454.Google Scholar
4 Jiao, S. J., Zhang, Z. Z., Lu, Y. M., Shen, D. Z., Yao, B., Zhang, J. Y., Li, B. H., Zhao, D. X., Fan, X. W., and Tang, Z.K. Appl. Phys. Lett. 2006, 88, 031911.Google Scholar
5 Gorla, C. R., Emanetoglu, N. W., Liang, S., Mayo, W. E., Lu, Y., Wraback, M., Shen, H. J. Appl. Phys. 1999, 85, 2595.Google Scholar
6 Li, B. S., Liu, Y. C., Zhi, Z. Z., J. Vac. Sci. Technol. A 2002, 217, 131.Google Scholar
7 Verghese, P. M., Clarke, D. R., J. Mater. Res. 1999, 14, 1039.Google Scholar
8 Sacki, H., Tabata, H., Kawai, T., Solid State Commun. 2001, 120, 439.Google Scholar
9 Wu, H. Z., He, K. M., Qiu, D. J., Huang, D. M., J. Crystal Growth 2000, 217, 131.Google Scholar
10 Ohgaki, T., Ohashi, N., Kakemoto, H., J. Appl. Phys. 2003, 93, 1961.Google Scholar
11 Chen, M., Pei, Z. L., Sun, C., J. Crystal Growth 2000, 220, 254.Google Scholar
12 Tominaga, K., Murayama, T., Mori, I., Thin Sloid Films 2001, 386, 267.Google Scholar
13. Zheleva, T. S., Nam, O. H., Bremser, M. D., and Davis, R. F., Appl. Phys.Lett. 1997, 71, 2472.Google Scholar
14. Kuwano, N., Horibuchi, K., Kagawa, K., Nishimoto, S. and Sueyoshi, M., J. Cryst. Growth 2002, 237–239, 1047.Google Scholar
15. Ishida, M., Ogawa, M., Orita, K., Imafuji, O., Yuri, M., Sugino, T., Itoh, K., J. Cryst. Growth 2000, 221, 345.Google Scholar
16. Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd ed. Wiley, New York, 1982.Google Scholar