Skip to main content Accessibility help

Ordering and Phase Separation in Movpe Ingap Alloys and Unicompositional Quantum Wells

  • David M. Follstaedt (a1), Richard P. Schneider (a1) and Eric D. Jones (a1)


The microstructures of In0.5Ga0.5P alloys grown on (100) GaAs by MOVPE have been characterized with cross-section TEM and their optical emission examined with photoluminescence at low temperatures. All the alloys exhibit spinodal-like decomposition with compositional modulations along directions in the growth plane. Alloys grown at 775 °C have the highest emission energy, 2.0 eV; growth at 675°C gave the lowest, 1.89 eV, due to strong CuPt-type ordering of In and Ga. The ordered domains are platelets 20 to 200 nm wide and 10-20 nm thick, with antiphase boundaries 1-2 nm apart. We have also formed "unicompositional" quantum wells of thin (1.3-20 nm) ordered layers grown at 675°C between disordered barriers grown at 750°C. Ordering is found only in the active layer, with domains similar to those of thick layers. The emission energy increases by 90 meV as the well thickness is decreased from 10 to 1.3 nm, thus demonstrating quantum size effects solely through disorder-order phenomena.



Hide All
1 Gomyo, A., Suzuki, T., Kawata, S., Hino, I. and Yuasa, T., Appl. Phys. Lett. 50, 673 (1987).
2 Schneider, R. P. Jr., Jones, E. D., Lott, J. A. and Bryan, R. P., J. Appl. Phys. 72, 5397 (1992).
3 Bellon, P., Chevalier, J. P., Martin, G. P., Dupont-Nivet, E., Thiebaut, C. and Andre', J. P., Appl. Phys. Lett. 52, 567 (1988).
4 Jones, E. D., Follstaedt, D. M., Lyo, S. K. and Schneider, R. P. Jr. in Semiconductor Heterostructures for Photonic and Electric Applications, edited by Tu, C. W., Houghton, D. C. and Tung, R. T. (Mater. Res. Soc. Symp. Proc. 281, Pittsburgh, PA, 1993) pp. 6166.
5 Bell, W. L. and Thomas, G., in Electron Microscopy and Structure of Materials, eds. Thomas, G., Fulrath, R. M. and Fisher, R. M. (Univ. Cal. Press, Berkeley, 1972) pp. 29 & 30.
6 Schneider, R. P. Jr., Jones, E. D. and Follstaedt, D. M., to be published.
7 Nozaki, C., Ohba, Y., Sugawara, H., Yasuami, S. and Nakanisi, T., J. Crystal Growth 93, 406 (1988).
8 Chen, G. S., Wang, T. Y. and Stringfellow, G. B., Appl. Phys. Lett. 56, 1464 (1990).
9 Biefeld, R. M., Baucom, K. C., Kurtz, S. R. and Follstaedt, D. M., J. Crystal Growth 133, 38 (1993).
10 McDevitt, T. L., Mahajan, S., Laughlin, D. E., Bonner, W. A. and Keramidas, V. G., Phys. Rev. B45, 6614 (1992).
11 Porter, D. A. and Easterling, K. E., Phase Transformations in Metals and Alloys (Van Nostrand Reinhold, Berkshire, England, 1983), pp. 308314.
12 Stringfellow, G. B., J. Appl. Phys. 54, 404 (1983).
13 Kurtz, S. R., Dawson, L. R., Biefeld, R. M., Follstaedt, D. M. and Doyle, B. L., Phys. Rev. B46, 1909 (1992).
14 Suzuki, T., Gomyo, A. and Iijima, S., J. Crystal Growth 93, 396 (1988).

Ordering and Phase Separation in Movpe Ingap Alloys and Unicompositional Quantum Wells

  • David M. Follstaedt (a1), Richard P. Schneider (a1) and Eric D. Jones (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed