Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T17:36:28.708Z Has data issue: false hasContentIssue false

Order-Disorder Transition at High Temperature and Microdomain Formation in Oxidized Ferrites

Published online by Cambridge University Press:  21 February 2011

J.C. Grenier
Affiliation:
Laboratoire de Chimie du Solide du CNRS, 351, cours de la Libération, 33405 Talence Cedex, France;
M. Pouchard
Affiliation:
Laboratoire de Chimie du Solide du CNRS, 351, cours de la Libération, 33405 Talence Cedex, France;
P. Hagenmuller
Affiliation:
Laboratoire de Chimie du Solide du CNRS, 351, cours de la Libération, 33405 Talence Cedex, France;
M.J.R. Henche
Affiliation:
Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense, Madrid-3, Spain.
M. Vallet
Affiliation:
Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense, Madrid-3, Spain.
J.M.G. Calbet
Affiliation:
Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense, Madrid-3, Spain.
M. A. Alario-Franco
Affiliation:
Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense, Madrid-3, Spain.
Get access

Abstract

At high temperature, nonstoichiometric perovskite-type related ferrites can be oxidized in air. At first sight, this phenomenon appears rather surprising since it corresponds to a partial formation of iron +IV. Moreover a structural transition occurs from a vacancy ordering state to a pseudodisordering one characterized by a cubic perovskite-type X-ray diffraction pattern. A TEM study has shown in fact a more complex situation attributed to a microdomain texture. This is explained from a crystallographic point of view and correlated to the existence of mixed valencies of iron.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grenier, J.C., Pouchard, M. and Hagenmuller, P., Structure and Bonding (Springer-Verlag Berlin Heidelberg), 47, 1, (1981).Google Scholar
2. Pouchard, M. and Grenier, J.C., Acad, C.R.. Sc., 284C, 311, (1977).Google Scholar
3. Gonzales-Calbet, J.M., Vallet Regi, M., Alario-Franco, M.A. and Grenier, J.C., Mat. Res. Bull., 18, 285, (1983).Google Scholar
4. Grenier, J.C., Fournès, L., Pouchard, M., Hagenmuller, P. and Komornicki, S., Mat. Res. Bull., 17, 55, (1982).Google Scholar
5. Komornicki, S., Grenier, J.C., Pouchard, M. and Hagenmuller, P., Nouv. J. Chimie, 5(3), 161, (1981).Google Scholar
6. Alario-Franco, M.A., Henche, M.J.R., Vallet, M., Calbet, J.M.G. and Grenier, J.C. J. Sol. State Chem., 46, 23, (1983).Google Scholar
7. Alario-Franco, M.A., Gonzalez-Calbet, J.M., Vallet-Regi, M. and Grenier, J.C., idem (1983) (under press).Google Scholar
8. Alario-Franco, M.A., Joubert, J.C. and Levy, J.P., Mat. Res. Bull., 17, 733, (1982).Google Scholar
9. Ea, N., Thesis, University of Bordeaux I (1983).Google Scholar