Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-20T08:01:34.594Z Has data issue: false hasContentIssue false

Optimization of p-type AlGaN/GaN and GaN/InGaN Superlattice Design for Enhanced Vertical Transport

Published online by Cambridge University Press:  01 February 2011

M. Z. Kauser
Affiliation:
SVT Associates, 7620 Executive Drive, Eden Prairie, MN 55344, USA. Dept. of ECE, University of Minnesota, 200 Union St. SE., Minneapolis, MN 55455, USA.
A. Osinsky
Affiliation:
SVT Associates, 7620 Executive Drive, Eden Prairie, MN 55344, USA.
J. W. Dong
Affiliation:
SVT Associates, 7620 Executive Drive, Eden Prairie, MN 55344, USA.
B. Hertog
Affiliation:
SVT Associates, 7620 Executive Drive, Eden Prairie, MN 55344, USA.
A. Dabiran
Affiliation:
SVT Associates, 7620 Executive Drive, Eden Prairie, MN 55344, USA.
P. P. Chow
Affiliation:
SVT Associates, 7620 Executive Drive, Eden Prairie, MN 55344, USA.
Get access

Abstract

We report on p-type AlGaN/GaN and GaN/InGaN superlattice (SL) designs with significantly improved vertical and lateral electrical conductivity (σV and σL). Composition-graded p–AlGaN layers were used to produce eight fold reduction in barrier height and a ∼40% increase in the sheet hole density in the p-GaN wells compared to typical SL structures. Thirteen orders of magnitude and 35 times improvement is obtained for σV and σL compared to typical SL and bulk p-GaN, respectively. A similar approach for p-GaN/InGaN SL resulted in seven fold reduction in barrier height and a ∼30% increase in the sheet hole density in the p-InGaN wells compared to a typical SL structures. σL is strongly dependent on hole mobility in the well and about 19 times improvement is obtained for the optimized design, SL-B, with μp=30 cm2 V-1s-1 compared to bulk-InGaN. More than 10 orders of magnitude improvement in σV is obtained for SL-B compared to modulation doped SL.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Polyakov, A. Y., Smirnov, N. B., Govorkov, A. V., Osinsky, A. V., Norris, P. E., Pearton, S. J., van Hove, J., Wowchak, A. and Chow, P., Appl. Phys. Lett. 79, 4372 (2001).Google Scholar
2. Heikman, S., Keller, S., Green, D. S., DenBaars, S. P. and Mishra, U. K., J. Appl. Phys. 94, 5321 (2003).Google Scholar
3. Kauser, M. Z., Osinsky, A., Dabiran, A., and Chow, P. P., Appl. Phys. Lett. 85 (22), (2004).Google Scholar
4. Makimoto, T., Kumakura, K., ECS Proceedings, Volume 2004–06, p.395404.Google Scholar
5. Kumakura, K., Makimoto, T., and Kobayashi, N., J. Appl. Phys., 93, 3370 (2003).Google Scholar
6. Zimmermann, T., Neuburger, M., Kunze, M., Daumiller, I., Denisenko, A., Dadgar, A., Krost, A., and Kohn, E., IEEE Elec. Dev. Lett., 25, 450 (2004).Google Scholar
7. Kumakura, K., Makimoto, T., and Kobayashi, N., Jpn. J. Appl. Phys., 39, L195 (2000).Google Scholar
8. Snider, G. L., Computer program 1D Poisson/Schrödinger- A Band Diagram Calculator, University of Notre Dame, Notre Dame, IN (1996).Google Scholar
9. Wetzel, C., Takeuchi, T., Yamaguchi, S., Katoh, H., Amano, H., and Akasaki, I., Appl. Phys. Lett. 73, 1994 (1998).Google Scholar
10. Zhang, H., Miller, E. J., Yu, E. T., Poblenz, C., and Speck, J. S., Appl. Phys. Lett. 84, 4644 (2004).Google Scholar
11. Chin, V. W. L., Tansley, T. L., and Osotchan, T., J. Appl. Phys., 75, 7365 (1994).Google Scholar
12. Yeo, Y. C., Chong, T. C., and Li, M. F., J. Appl. Phys., 83, 1429 (1998).Google Scholar
13. Fiorentini, V., Bernardini, F., and Ambacher, O., Appl. Phys. Lett., 80, 1204 (2002).Google Scholar