Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-20T10:48:37.346Z Has data issue: false hasContentIssue false

The Optimization of Interfaces in InAsSb/InGaAs Strained-Layer Superlattices grown by Metal-Organic Chemical Vapor Deposition

Published online by Cambridge University Press:  22 February 2011

R. M. Biefeld
Affiliation:
Sandia National Laboratory, Albuquerque, NM
K. C. Baucom
Affiliation:
Sandia National Laboratory, Albuquerque, NM
S. R. Kurtz
Affiliation:
Sandia National Laboratory, Albuquerque, NM
Get access

Abstract

We have prepared InAsSb/InGaAs strained-layer superlattice (SLS) semiconductors by metal-organic chemical vapor deposition (MOCVD) using a variety of growth conditions. The presence of an InGaAsSb interface layer is indicated by the x-ray diffraction patterns. The optimized growth conditions involved the use of low pressure, short purge times between the growth of the layers, and no reactant flow during the purges. We used MOCVD to prepare an optically pumped, single heterostructure InAsSb/InGaAs SLS / InPSb laser which emitted at 3.9 μm with a maximum operating temperature of approximately 100 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Menna, R. J., Capewell, D. R., Martinelli, R. U., York, P. K., and Enstrom, R. E., Appl. Phys. Lett. 52, (1991) 2127.Google Scholar
[2] Biefeld, R. M., J. Crystal Growth 75 (1986) 255.Google Scholar
[3] Biefeld, R. M., Kurtz, S. R., and Casalnuovo, S. A., J. Crystal Growth 124 (1992) 401.Google Scholar
[4] Biefeld, R. M., Baucom, K. C., Kurtz, S. R., and Follstaedt, D. M., Mat. Res. Soc. Symp. Proc., Physics and Applications of Defects in Advanced Semiconductors, 325, 493 (1994).Google Scholar
[5] Kurtz, S. R. and Biefeld, R. M., Dawson, L. R., Baucom, K. C., and Howard, A. J., Appl. Phys. Lett. 64, 812 (1994).Google Scholar
[6] Biefeld, R. M., Hills, C. R. and Lee, S. R., J. Crystal Growth 91 (1988) 515.Google Scholar
[7] Kurtz, S. R. and Biefeld, R. M., Phys. Rev. B 44, 1143 (1991).Google Scholar
[8] Landgren, G., Wallin, J., and Pellegrino, S., J. Electronic Mater., 21 (1992) 105.Google Scholar
[9] Chow, D. H., Miles, R. H., Soderstrom, J. R., and McGill, T. C., J. Vac. Sci. Technol. B8 (1990) 710.Google Scholar
[10] Mani, Habib and Joullie, Andre, SPIE 1362 (1990) 38.Google Scholar
[11] Ziel, J. P. van der, Chiu, T. H., and Tsang, W. T., Appl. Phys. Lett. 48, (1986) 315.Google Scholar
[12] Eglash, S. J. and Choi, H. K., Appl. Phys. Lett. 64 (1994) 833.Google Scholar