Skip to main content Accessibility help

Optimization of immobilization of strontium and uranium by the solid matrix

  • S. Raicevic (a1), I. Plecas (a1), D. I. Lalovic (a1) and V. Veljkovic (a1)


One of the basic physical parameters which defines: (1) the capacity of the solid matrix for the incorporation (sorption) of the impurity and (2) the stability of the solid matrix -impurity system, is the ion-ion interaction potential, representing the main term of the cohesive energy. Using this parameter determined in the frame of the pseudopotential theory and pseudoatomic approximation we have investigated the systems HAP-Sr and HAP-UO2. In analysis, the hydroxyapatite (HAP, Ca10(PO4)6(OH)2) was selected as a model solid matrix since insoluble phosphates, phosphate ceramic and apatite-like materials are candidates for the immobilization of radionuclides. The substitution of calcium atoms by different impurities in HAP can be presented by the formula: Ca10-xMx(PO4)6(OH)2, where 0 ≤ x ≤ 10 and M = Sr2+, UO2 2+. It has been shown that (1) Sr can be safely immobilized by HAP, natural apatites and phosphate rocks in the whole range of its concentrations, and (2) that HAP is not an appropriate solid-matrix for immobilization of UO2 2+ because its incorporation in the low concentration results in a decrease of the matrix stability, stimulating formation of the inhomogeneous structure containing isolated clusters of the UO2- apatite solid phase.



Hide All
1. IAEA Technical Report Series No. 287, Treatment of alpha bearing waste, (IAEA, Vienna, 1988), p. 39.
2. Plecas, I., in Proceedings on the International Conference TOP SAFE'98, (Valencia, 1998) pp. 3436.
3. Roy, R., Radioactive Waste Disposal, (Pergamon Press, New York, 1982).
4. Lutze, W. and Ewing, R.C., Radioactive Waste Forms for the Future, (Elsevier Science Publishers, Amsterdam, 1988).
5. Harrison, W. A., Pseudopotentials in the Theory of Metals, (Benjamin, New York, 1966).
6. Heine, V. and Weaire, D., Pseudopotential theory of cohesion and structure, in Solid State Physics, Vol.24, edited by Ehrenreich, H., Seitz, F. and Tumbll, D. (Academic Press, 1970), p. 427.
7. Narasaraju, T. S. B. and Phebe, D. E., J. Mater. Sci. 31, 1 (1996).
8. Raicevic, S., Vukovic, Z., Lazic, S. and Mandic, M., J. Radioanal. Nucl. Chem. Articles 198, 303 (1995); S. Raicevic, Z. Vukovic, T. L. Lizunova and V. F. Komarov, J. Mater. Sci., 203, 363 (1996).
9. Ma, Q. Y., Traina, S. J., Logan, T. J. and Ryan, J. A., Environ. Sci. Technol. 27, 1803 (1993).
10. Jeanjean, J., Rouchaud, J. C., Tran, L. and Fedoroff, M. J., J. Radioanal. Nucl. Chem. Letters 201, 529 (1995).
11. Gauglitz, R., Mat. Res. Soc. Proc. 257, 567 (1992).
12. Veljkovic, V. and Slavic, I., Phys. Rev. Lett. 29, 105 (1972).
13. Veljkovic, V., Phys. Lett. 45A, 41 (1973).
14. Veljkovic, V. and Lalovic, D. I., Phys. Rev. B 11, 4242 (1975); Phys. Lett. A 142, 528 (1989).
15. Slavica, Raicevic, Lalovic, D. I. and Yu., V. Veljkovic, Patent File No. P269/97 (25 June 1997).
16. Lower, S. K., Maurice, P. A. and Traina, S. J., Geochim. Cosmochim. Acta 62, 1773 (1998).
17. Moncoffre, N., Barbier, G., Leblond, E., Martin, P. and Jaffrezic, H., Nucl. Inst. Meth. Phys. Res. Sec. B 140, 402 (1998).

Optimization of immobilization of strontium and uranium by the solid matrix

  • S. Raicevic (a1), I. Plecas (a1), D. I. Lalovic (a1) and V. Veljkovic (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed