Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-06T10:11:02.962Z Has data issue: false hasContentIssue false

Optimization of Aluminum Nitride Thermal Conduchvity VIA Controlled Powder Processing

Published online by Cambridge University Press:  25 February 2011

Theresa A. Guiton
Affiliation:
Dow Chemical, Advanced Ceramics Laboratory, 1776 Building, Midland, MI 48674
James E. Volmering
Affiliation:
Dow Chemical, Advanced Ceramics Laboratory, 1776 Building, Midland, MI 48674
Kris K. Killinger
Affiliation:
Dow Chemical, Advanced Ceramics Laboratory, 1776 Building, Midland, MI 48674
Get access

Abstract

The emergence of aluminum nitride ceramics in electronic and structural applications has been largely due to the increased availability of high quality powders. Much of the process development has been concentrated in capturing markets within the electronics industry, mainly high thermal conductivity substrates. The thermal conductivity of A1N substrates is strongly dependent on oxygen chemistry and sintering parameters. A key source of oxygen is AlN powder impurities. In this study, powders with differing oxygen contents were formulated with various Y2O3 levels. The results indicate that the distribution of sintered oxygen is strongly correlated with the relative concentration of the powder's lattice and surface oxygen. Under the sintering parameters of the analysis, optimal thermal conductivities were achieved when Y4Al2O9 was present as the grain boundary phase. As predicted, the powders with the lowest lattice oxygen concentrations exhibited the highest thermal conductivities. Hence, depending upon the surface oxygen content, different yttria levels were required for optimal thermal conductivities, i.e., higher surface oxygen contents required higher sintering additive levels than did low surface oxygen powders.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kuramoto, N., Taniguchi, H. and Aso, I., IEEE Trans. Components Hybrid, Manuf. Technol. CHMT-9, (4), 386390 (1986).CrossRefGoogle Scholar
2. Werdecker, W. and Aldinger, F., IEEE Trans. Components Hybrid, Manuf. Technol. CHMT-7, (4), 402406 (1984).Google Scholar
3. Luh, E. Y., Enloe, J. H., Lau, J. W., and Dolhert, L. E., IEPS 1991, 366–372.Google Scholar
4. Farzanehfard, H., Eishabini-Riad, A. and Vorperian, V., ISHM Proceedings 1991, 472477.Google Scholar
5. Slack, G. A., J. Phys. Chem. Solids 34, 321335 (1973).Google Scholar
6. Slack, G. A., Tanzilli, R. A., Pohl, R. O., Vandersande, J. W., J. Phys. Chem. Solids 48. (7), 641647 (1987).CrossRefGoogle Scholar
7. Buhr, H., Muller, G., Wiggers, H., Aldinger, F., Foley, P., and Rossen, A., J. Am. Ceram. Soc. 24 (4), 718723(1991).CrossRefGoogle Scholar
8. Virkar, A. V., Jackson, T. B., Cutler, R. A., J. Am. Cer. Soc. 22 (11), 20312042 (1989).Google Scholar
9. Watari, K., Kawamot, M., and Ishizaki, K., J. Materials Sci. 26, 47274732 (1991).CrossRefGoogle Scholar
10. Yagi, T., Shinozaki, K., Mizutani, N., Kato, M., and Sawada, Y., J. Ceram. Soc. Jpn. Inter. Ed. 22, 13741381 (1989).Google Scholar
11. Mizutani, N. and Shinozaki, K., Buli. Cer. Soc. Japan 26 (8), 738743 (1991).Google Scholar
12. Raghavan, N. S., Materials Science and Engineering A148, 307317 (1991).Google Scholar
13. Paquette, M. S., Board, J. L., Haney, C. N., Knudsen, A. K., Susnitzky, D. W., Rudolf, P. R., Beaman, D. R., Newman, R. A., and Froelicher, S. W., in Ceram. Trans‥ Ceramic Powder Science III Vol. 12. ed. Messing, G. L., Hirano, S., and Hausner, H. (American Ceramic Soc, Westerville, OH, 1990) pp. 885893.Google Scholar
14. Komeya, K., Inoue, H., and Tsuge, A., Yogyo-Kyokai-Shi 89 (6), 330336 (1981).Google Scholar
15. Komeya, K., Tsuge, A. and Inoue, H., U.S. Patent No. 4 435 513 (1984).Google Scholar
16. Huseby, I. C. and Bobik, C. F., U.S. Patent No. 4 478 785 (1984).Google Scholar
17. Miyashiro, F., Iwase, N., Tsuge, A., Ueno, F., Nakahashi, M., and Takahashi, T., IEEE Trans. Components Hybrid, Manuf. Technol. CHMT-13 (2), 313319 (1990).CrossRefGoogle Scholar