Skip to main content Accessibility help

Optical Waveguides Embedded in PCBs - A Real World Application of 3D Structures Written by TPA

  • Ruth Houbertz (a1), Herbert Wolter (a2), Volker Schmidt (a3), Ladislav Kuna (a4), Valentin Satzinger (a5), Christoph Wüchter (a6) and Gregor Langer (a7)...


The integration of optical interconnects in printed circuit boards (PCB) is a rapidly growing field worldwide due to a continuously increasing need for high-speed data transfer. There are any concepts discussed, among which are the integration of optical fibers or the generation of waveguides by UV lithography, embossing, or direct laser writing. The devices presented so far require many different materials and process steps, but particularly also highly-sophisticated assembly steps in order to couple the optoelectronic elements to the generated waveguides. In order to overcome these restrictions, an innovative approach is presented which allows the embedding of optoelectronic components and the generation of optical waveguides in only one optical material. This material is an inorganic-organic hybrid polymer, in which the waveguides are processed by two-photon absorption (TPA) processes, initiated by ultra-short laser pulses. In particular, due to this integration and the possibility of in situ positioning the optical waveguides with respect to the optoelectronic components by the TPA process, no complex packaging or assembly is necessary. Thus, the number of necessary processing steps is significantly reduced, which also contributes to the saving of resources such as energy or solvents. The material properties and the underlying processes will be discussed with respect to optical data transfer in PCBs.



Hide All
[1] Vandeputte, K., Daele, P. Van, Hoedt, E., Koetsem, J. Van, and Hossfeld, J., Low cost multi-fiber add/drop multiplexer demonstration system, Proc. of the 25th European Conference on Optical Communication, Nice, Vol. 1 (1999) 112.
[2] Schröder, H., Bauer, J., Ebling, F., Franke, M., Beier, A., Demmer, P., Süllau, W., Kostelnik, J., Mödinger, R., Pfeiffer, K., Ostrzinski, U., and Griese, E., Waveguide and packaging technology for optical backplanes and hybrid electrical-optical circuits, Proc. SPIE Vol. 6124 (2006) 612407–13.
[3] Kobayashi, J., Matsuura, T., Hida, Y., Sasaki, S., and Maruno, T., Fluorinated Polyimide Waveguides with Low Polarization-Dependent Loss and Their Applications to Thermooptic Switches, J. Lightwave Techn. 16 (1998) 1024.
[4] Steenberge, G. Van, Geerinck, P., Put, S. Van, Koetsem, J. Van, Ottevaere, H., Morlion, D., Thienpont, H., and Daele, P. Van, MT-Compatible Laser-Ablated Interconnections for Optical Printed Circuit Board, J. Lightwave Techn. 22 (2004) 2083.
[5] Griese, E., A high-performance hybrid electrical-optical interconnection technology for high-speed electronig systems, IEEE Trans. Adv. Packaging 24 (2001) 375.
[6] Tooley, F., Suyal, N., Bresson, F., Fritze, A., Gourlay, J., Walker, A., and Emmery, M., Optically written polymers used as optical interconnections and for hybridization, Opt. Mat. 17 (2001) 235.
[7] Eldada, L., Nanoengineered polymers for photonic integrated circuits, Proc. of SPIE 5931 (2005) 59310F–1.
[8] Registered trademark of the Fraunhofer-Gesellschaft für Angewandte Forschung e.V., Germany.
[9] Haas, K.-H., and Wolter, H., Properties of Polymer-Inorganic Composites, Encyclopedia of Materials: Science and Technology 7584 (2001) 1.
[10] Uhlig, S., Fröhlich, L., Chen, M., Arndt-Staufenbiel, N., Lang, G., Schröder, H., Houbertz, R., Popall, M., and Robertsson, M., Polymer optical interconnects - a scalable large-area panel processing approach, IEEE Trans. Adv. Packaging 29 (2006) 158.
[11] Streppel, U., Dannberg, P., Wächter, Ch., Bräuer, A., Fröhlich, L., Houbertz, R., and Popall, M., New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic-organic hybrid) polymers, Opt. Mater. 21 (2002) 475.
[12] Bräuer, A., Dannberg, P., Mann, G., and Popall, M., Precise Polymer Micro-Optical Systems, MRS Bull. 26 (2001) 519.
[13] Houbertz, R., Fröhlich, L., Popall, M., Streppel, U., Dannberg, P., Bräuer, A., Serbin, J., and Chichkov, B.N., Inorganic-Organic Hybrid Polymers for Information Technology: from Planar Technology to 3D Nanostructures, Adv. Eng. Mater. 5 (2003) 551.
[14] Robertsson, M.E., Hagel, O.J., Gustafsson, G., Dabek, A., Popall, M., Cergel, L., Wennekers, P., Kiely, P., Lebby, M., and Lindhal, T., O/e-MCM Packaging with New, Patternable Dielectric and Optical Materials, Proc. 48th Electron. Comp. Technol. Conf. (Seattle, Washington, USA), Institute of Electrical and Electronics Engineers, Inc. 1998) IEEE Catalogue No. 98CH36206 (1998), p. 1413.
[15] Haas, U., Haase, A., Satzinger, V., Pichler, H., Leising, G., Jakopic, G., Stadlober, B., Houbertz, R., Domann, G., and Schmitt, A., Hybrid polymers as tunable and directly-patternable gate dielectrics in organic thin-film transistors, Phys. Rev. B 73 (2006) 235339.
[16] Houbertz, R., Froehlich, L., Schulz, J., and Popall, M., Inorganic-organic Hybrid Materials (ORMOCER®s) for Multilayer Technology - Passivation and Dielectric Behavior, Mater. Res. Soc. Symp. Proc. 665 (2001) 321.
[17] Houbertz, R., Schulz, J., Froehlich, L., Domann, G., and Popall, M., Inorganic-organic hybrid materials for polymer electronic applications, Mater. Res. Soc. Symp. Proc. 769 (2003) 239.
[18] Maruo, S., Nakamura, O., and Kawata, S., Three-dimensional microfabrication with two-photon-absorbed photopolymerization, Opt. Lett. 22 (1997) 132.
[19] Houbertz, R., Declerck, P., Passinger, S., Ovsianikov, A., Serbin, J., and Chichkov, B.N., Investigations on the generation of photonic crystals using two-photon polymerization (2PP) of inorganic-organic hybrid polymers with ultra-short laser pulses, phys. stat. sol. (a) 204 (2007) 3662.
[20] Houbertz, R., Laser Interaction in Sol-Gel Based Materials – 3-D Lithography for Photonic Applications, Appl. Surf. Sci. 247 (2005) 504.
[21] Houbertz, R., Wolter, H., Dannberg, P., Serbin, J., and Uhlig, S., Advanced packaging materials for optical applications: bridging the gap between nm-size structures and large-area panel processing, Proc of SPIE 6126 (2006) 612605.
[22] Zehetner, H., Langer, G., Riester, M., Mündlein, M., Nicolics, J., and Houbertz, R., Thermal Analyses of a Multilayer with Embedded Vertical-Cavity Surface Emitting Lasers, Proc. of the IEEE Polytronic 2007, 15.-18.1.2007 Tokyo (J) (2007) 245.
[23] Schmidt, V., Kuna, L., Satzinger, V., Houbertz, R., Jakopic, G., and Leising, G., Application of two-photon 3D lithography for the fabrication of embedded ORMOCER® waveguides, Proc. of SPIE 6476 (2007) 64760P–1.
[24] Glebov, A.L., Lee, M.G., and Yokouchi, K., Integration technologies for pluggable backplane optical interconnect systems, Opt. Eng, 46 (2007) 015403.
[25] Houbertz, R., Uhlig, S., Glebov, A., to be submitted to Proc. of SPIE (2008).
[26] Langer, G. and Riester, M., Two-photon absorption for the realization of optical waveguides on printed circuit boards, Proc. of SPIE 6475 (2007) 64750X–1.
[27] Garhöfer, C., Experimental characterization of components for boards with embedded polymer waveguides, Diploma Thesis, TU Wien (2005).


Optical Waveguides Embedded in PCBs - A Real World Application of 3D Structures Written by TPA

  • Ruth Houbertz (a1), Herbert Wolter (a2), Volker Schmidt (a3), Ladislav Kuna (a4), Valentin Satzinger (a5), Christoph Wüchter (a6) and Gregor Langer (a7)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed