Skip to main content Accessibility help

Optical Transitions in Light-Emitting Nanocrystalline Silicon Thin Films

  • T. Toyama (a1), Y. Kotani (a1), A. Shimode (a1), S. Abo (a1) and H. Okamoto (a1)...


Optical transitions in nanocrystalline Si (nc-Si) thin films with different mean crystal sizes ranging from < 2 nm to ~3 nm have been studied by electroreflectance (ER) spectroscopy. At 293 K, ER signals are observed at 1.20-1.37 eV to be corresponding to fundamental gap in bulk crystalline Si. With a decrease in the mean crystal sizes of nc-Si, the transition energy of the fundamental gap is increased and the ER signal is intensified. The bandgap widening would be due to quantum confinement (QC) in nc-Si, and the increased signal indicates appearance of direct transition nature. The ER signals are also observed at 2.2 eV and at E 1 (E0 ’) direct gap of 3.1-3.4 eV, while photoluminescence (PL) peak energies are located at 1.65-1.75 eV and at 2.3 eV. With the reduced mean crystal size, the 1.7-eV PL peak energy is also increased, suggesting that QC is also responsible for the increased PL peak energy.



Hide All
1. Lockwood, D. J., Light Emission in Silicon From Physics to Devices, Semiconductors and Semimetals, vol. 49, edited by Willardson, R. K. and Weber, E. R. (Academic Press, New York, 1997) and references there in.
2. Toyama, T., Kotani, Y., Shimode, A., Shimizu, K., and Okamoto, H., Mater. Res. Soc. Symp. Proc. 507, 243 (1999), T. Toyama, Y. Kotani, H. Okamoto, and H. Kida, Appl. Phys. Lett. 72 1489 (1998).
3. Street, R.A., Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991).
4. Lehmann, V. and Gisele, U., Appl. Phys. Lett. 58, 856 (1991), Y. Kanemitsu, Phys. Rev. B 48, 12357 (1993), A. Kux and M. Ben Chorin, Phys. Rev. B 51, 17535 (1995).
5. Yu, P. Y. and Cardona, M., Fundamentals of Semiconductors, (Springer, Berlin, 1996), F. H. Pollak, in Optical Properties of Semiconductors, Handbook on Semiconductors Completely Revised Edition, edited by T. S. Moss, (Elsevier Science, Netherlands, 1994) vol. 2, p. 527, D. E. Aspnes, Surf. Sci. 37, 418 (1973).
6. Toyama, T., Kotani, Y., Shimode, A., and Okamoto, H., to appear in Appl. Phys. Lett.
7. Sui, Z., Leong, P. P., Herman, I. P, Higashi, G. S., and Temikin, H., Appl. Phys. Lett. 60, 2086 (1992).
8. Richter, H., Wang, Z. P. and Ley, L., Solid State Commun. 39, 625 (1981), I. H. Campbell and P M. Fauchet, Solid State Commun. 58, 739 (1986).
9. Lautenschlager, P., Allen, P. B., and Cardona, M., Phys. Rev. B 31, 2163 (1985) and references there in.
10. Pickering, C., in Porous Silicon, edited by Feng, Z. C. and Tsu, R. (World Science, Singapore, 1994) p. 3, A. Daunois and D. E. Aspnes, Phys. Rev. B 18, 1824 (1978), V. I. Gavarilenko, J. Humlicek, N. I. Klyui, and V. G. Litovchenko, phys. stat. sol. (b) 155, 723 (1989).
11. Brus, L., J. Phys. Chem. 98, 3575 (1994), M. S. Hybertsen, in Porous Silicon Science and Technology, edited by J.-C. Vial and J. Derrien (Springer, Berlin, 1995) p. 67.
12. Haug, H. and Koch, S. W., Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1990) p. 332.
13. Ranjan, V., Singh, V. A., and John, G. C., Phys. Rev. B 58, 1158 (1998).
14. Hamakawa, Y., in Hydrogenated Amorphous Silicon, Semiconductors and Semnimetals, vol. 21B, edited by Pankove, J. I. (Academic Press, New York, 1984) p. 141.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed