Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T01:20:35.736Z Has data issue: false hasContentIssue false

Optical Properties of Doped Cd1−xMnxTe

Published online by Cambridge University Press:  26 February 2011

Y. Lansari
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202
N. C. Giles
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202
J. F. Schetzina
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202
P. Becia
Affiliation:
Massachusetts Institute of Technology, Francis Bitter National Magnet Laboratory, Cambridge, Massachusetts 02139
D. Kaiser
Affiliation:
Massachusetts Institute of Technology, Francis Bitter National Magnet Laboratory, Cambridge, Massachusetts 02139 IBM Research, Yorktown Heights, New York 10598
Get access

Abstract

The introduction of phosphorus and arsenic dopants into bulk Cd1−xMnx Te crystals grown by the Bridgman-Stockbarger technique has been studieA-with respect to the resulting optical properties. Samples with a Mn composition in the range 0.10 < x < 0.30, both as-grown and annealed, were investigated. A combination of room temperature transmittance and reflectance measurements over the spectral range from the ultraviolet to the far infrared has been used to gain information concerning the structural quality of the samples. Low temperature photoluminescence measurements (1.6−5 K) were used to determine optical quality and excitonic energies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Furdyna, J. K., J. Vac. Sci. Technol. 21, 220 (1982).CrossRefGoogle Scholar
2. Peterson, D. L., Petrou, A., Datta, M., Randas, A. K., and Rodriguez, S., Solid State Commun. 43, 667 (1982).Google Scholar
3. Gaj, J. A., Galazka, R. R., and Nawrocki, M., Solid State Commun. 25, 193 (1978).Google Scholar
4. Ryabchenko, S. M., Terletskii, O. V., Mizetskaya, I. B., and Olenik, G. S., Fiz. Tekh. Poluprovodn. 15, 2314 (1981) [Sov. Phys.-Semicond. 15, 1345 (1981)].Google Scholar
5. Becla, P., Kaiser, D., Giles, N. C., Lansari, Y., and Schetzina, J. F., submitted to J. Appl. Phys.Google Scholar
6. Khoi, N. T. and Gaj, J. A., Phys. Stat. Sol. B83, K133 (1977).Google Scholar
7. Abreu, R. A., Giriat, W., and Vecchi, M. P., Phys. Lett. 85A, 399 (1981).CrossRefGoogle Scholar
8. Zanio, K., Semiconductors and Semimetals, Vol. 13, ed. Willardson, R. K. and Beer, A. C., (Academic Press, 1978).Google Scholar
9. Bucker, R., Gumlich, H. E., and Krause, M., J. Phys. C: Sol. State Phys. 18, 661 (1985).CrossRefGoogle Scholar
10. As, D. J. and Palmetshofer, L., J. Cryst. Growth 72, 246 (1985).CrossRefGoogle Scholar
11. Schubert, E. F., Gobel, E. O., Horikoshi, Y., Ploog, K., and Queisser, H. J., Phys. Rev. B30, 813 (1984).Google Scholar
12. Heimer, D., Becla, P., Kershaw, R., Ridgley, D., Dwight, K., Wold, A. and Galazka, R. R., Phys. Rev. B34, 3961 (1986).Google Scholar