Skip to main content Accessibility help
×
Home

Optical near-field enhancement around lithographic metallic nanostructures using an azo-dye polymer: direct observation and realization of sub-wavelength complex structures

  • Christophe Hubert (a1), Anna Rumyantseva (a1), Gilles Lérondel (a1), Johan Grand (a1), Sergeï Kostcheev (a1), Laurent Billot (a1), Alexandre Vial (a1), Renaud Bachelot (a1), Pascal Royer (a1), Gilbert Chang (a1), Stephen K. Gray (a2), Gary P. Wiederrecht (a2) and George C. Schatz (a3)...

Abstract

We report on the direct observation of optical near-field enhancement around metallic nanoparticles. We used an easy to set up approach which consists in irradiating a photosensitive azo-dye polymer film spin-coated on metallic nanostructures. Photoinduced topographical modifications of the polymer film surface are characterized after irradiation by atomic force microscopy (AFM). Comparisons between AFM images and numerical simulations show that these photo-induced topography agrees with the near-field intensity distribution around the nano-structures. The possibility of generating complex structures is demonstrated.

Copyright

References

Hide All
1. Krenn, J. R., Salerno, M., Félidj, N., Lamprecht, B., Schider, G., Leitner, A., Aussenegg, F. R., Weeber, J. C., Dereux, A., and Goudonnet, J. P., J. Microsc. 202, 122, (2000)
2. Bouhelier, A., Huser, T., Hamaru, H., Güntherodt, H. J., Pohl, D. W., Baida, F. I., and Van Labeke, D., Phys. Rev. B. 63, 155404, (2001).
3. Hillendrand, R., Keilmann, F., Hanarp, P., Sutherland, D. S., and Aizpurua, J., Appl. Phys. Lett., 83, 368, (2003).
4. Andre, P., Charra, F., Chollet, P. A., and Pileni, M. P., Adv. Mat. 14, 601, (2002).
5. Ikawa, T., Hasegawa, M., Tsuchimori, M., Watanabe, O., Kawata, Y., Egami, C., Sugihara, O., and Okamoto, N., Synt. Met. 124, 159, (2001).
6. Kik, P. G., Maier, S. A., and Atwater, H. A., Mat. Res. Soc. Symp. Proc 705, 101, (2002).
7. Grand, J., Kostcheev, S., Bijeon, J. L., Lamy de la Chapelle, M., Adam, P. M., Rumyantseva, A., Lérondel, G., and Royer, P., Synt. Met. 139, 621, (2003).
8. Jones, C., and Day, S., Nature 351, 15, (1991).
9. Hall, D. B., Dhinojwala, A., and Torkelson, M., Phys. Rev. Lett. 79, 103, (1997).
10. Kim, D. Y., Tripathy, S. K., Li, L., and Kumar, J., Appl. Phys. Lett. 66, 1166, (1995).
11. Rochon, P., Batalla, E., and Natansohn, A., Appl. Phys. Lett. 66, 136, (1995).
12. Lefin, P., Fiorini, C., and Nunzi, J. M., Opt. Materials 9, 323, (1998).
13. Barrett, C. J., Rochon, P., and Natansohn, A. J. Chem. Phys., 109, 1505, (1998).
14. Bian, S., Li, L., Kumar, J., Kim, D. Y., Williams, J., and Tripathy, S. K., Appl. Phys. Lett. 73, 1, (1995).
15. Taflove, A., and Hagness, S. C., “Computational Electrodynamics: The Finite-Difference Time-Domain Method,” (Artech House, Boston, 2nd edition, 2000).
16. Gray, S. K., and Kupka, T., Phys. Rev. B. 68, 045415, (2003).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed