Skip to main content Accessibility help
×
Home

Optical Limiting with Lithium Niobate

  • Gary Cook (a1), David C. Jones (a1), Craig J. Finnan (a2), Lesley L. Taylor (a1), Tony W. Vere (a1) and Jason P. Duignan (a1)...

Abstract

Iron doped lithium niobate (Fe:LiNbO3) in a simple focal plane geometry has demonstrated efficient optical limiting through two-beam coupling. The performance is largely independent of the total Fe concentration and the oxidation state of the Fe ions, providing the linear optical transmission of uncoated crystals is between 30% and 60%. Fe has been found to be the best dopant for LiNbO3, giving the widest spectral coverage and the greatest optical limiting. Optical limiting in Fe:LiNbO3 has been shown to be very much greater than predicted by simple diffusion theory. The reason for this is a higher optical gain than expected. It is suggested that this may be due to an enhancement of the space-charge field arising from the photovoltaic effect. The standard two-beam coupling equations have been modified to include the effects of the dark conductivity. This has produced a theoretical intensity dependence on the ΔOD which closely follows the behaviour observed in the laboratory. A further modification to the theory has also shown that the focusing lens f-number greatly affects the optical limiting characteristics of Fe:LiNbO3. A lens f-number of approximately 20 gives the best results.

Copyright

References

Hide All
1. Crane, R., Lewis, K., Stryland, E. V. and Khoshnevisan, M., Materials for Optical Limiting, Materials Research Society Symposium Proceedings, vol. 374, 1995.
2. Sutherland, R., Patcher, R., Hood, P., Hagan, D., Lewis, K., Perry, J., Materials for Optical Limiting II, Materials Research Society Symposium Proceedings, vol. 479, 1997.
3. Salmo, J., Duree, G. C. Jr., Morin, M., Sharp, E. J., Wood, G. L. and Neurgaonkar, R. R., Materials Research Society Symposium Proceedings, vol. 374, 1995.
4. Kukhtarev, V., Markov, V. B., Odulov, S. G. and Vinetskii, V. L., Ferroelectrics, vol. 22, pages 949960, 1979.
5. Solymar, L., Webb, D. J. and Grunnet-Jepsen, A., The Physics and Applications of Photorefractive Materials, Oxford Series in Imaging Science, vol. 11, Clarendon Press, Oxford, 1996.
6. Jones, D. C., Wave interactions in Photorefractive Materials, D. Phil. Thesis, Wadham College, Oxford University, 1989.
7. Kawasaki, K., Okano, Y., Kan, S., Sakamoto, M., Hoshikawa, K., Fukuda, T., “Uniformity of Fe-doped LiNbO 3 single crystals grown by the Czochralski method”, Journal of Crystal Growth, vol 119, 1992, pp 317321.
8. Krumins, A. chen, Z., shiosaki, T., “Photorefractive reflection gratings and coupling gain ibn LiNbO3:Fe”, Optics communication, vol 117, pp 147150, 1995
9. Li, M., Jin, C., Xu, Y., “Reduction of photorefractive response time in double-doped LiNbO3:Fe,Tb”, SPIE Vol 2379, pp 2 98–300.
10. Cook, G., Finnan, C. J., Jones, D. C., “High optical gain using counterpropagating beams in iron and terbiumdoped photorefractive lithium niobate”, Applied Physics B, vol 68, pp 911916, 1999.
11. McMillen, D. K., Hudson, T. D., Wagner, J., Singleton, J., “Holographic recording in specially doped lithium niobate crystals”, Optics Express, vol 2, no. 12, pp 491502, 1998.
12. Burr, G. W., Psaltis, D., “Effect of oxidation state of LiNbO3:Fe on the diffraction efficiency of multiple holograms”, Optics Letters, vol 21, no. 12, p 893895, 1996.
13. Glass, A. M., Linde, D. von der, Negran, T. J., “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 ”, Applied Physics Letters, vol 25, no. 4, pp 233235, 1974.
14. Arizmendi, L. and Agullo-Lopez, F., “LiNbO3: a paradigm for photorefractive materials”, Material Research Society Bulletin, pp 3238, March 1994.
15. Brovkovich, V. G., Sturman, B. I., “Observation of nonequilibrium diffusion in LiNbO3 crystals”, Soviet Physics JETP Letters, vol. 37, p550, 1983.
16. Rupp, R. A., Sommerfeldt, R., Ringhofer, K. H., Kratzig, E., “Space charge field limitations in photorefractive LiNbO3:Fe crystals”, Applied Physics B, vol. 51, pp 364370, 1990.
17. Prokhorov, A. M., Kuz'minov, Yu S., Physics and chemistry of crystalline lithium niobate, p301, Pub. Adam Hilger, 1990.
18. Cook, G., “Stimulated Brillouin scattering (SBS) dye laser amplifiers”, IEEE/LEOS Nonlinear Optics ‘98, Kauai, 914th August, 1998.
19. Cook, G., Jones, D. C., Finnan, C. J., Taylor, L. L., Vere, A. W., “Optical limiting with lithium niobate”, SPIE vol.3798, 2122 July 1999.
20. Kukhtarev, N. V., Lyuksyutov, S. F., Buchhave, P., Kukhtareva, T., Sayano, K., Banerjee, P. P., “Self-enhancement of dynamic gratings in photogalvanic crystals”, Physical Review A, vol. 58, no. 5, p4051, 1998.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed